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Log-Space 
 

Review of Log-Space Turing Machines: 
 
A log-space Turing Machine is comprised of two tapes: the input tape of size n which is 

cannot be written on, and the work tape of size        .  

 
 
A way to think about these two tapes is in terms of memory, where the input tape is the 
equivalent of read-only memory on disk while the work tape is the equivalent of RAM. 
 
Example    Early on in the quarter, we considered the following language: 
 

  {          } 
 
The algorithm we came up with was to move the header back and forth across the 
input, crossing off a 1 for every 0 crossed off until either there was a left over 0 or 1, or 
all the numbers were crossed out, as depicted below.  

 
This algorithm does not work in log-space, however, since it requires being able to write 
to the entirety of the input. Since we have two tapes and, as such, two headers, we can 

easily count each number. It only takes         bits to store each counter. 

 



As such, the log-space algorithm is to simply count up all the 0’s, count up all the 1’s, 
and compare the counters to see if they are equal. 
 
 
 

              
 

Claim       
Proof   Consider a log-space Turing Machine M with input w of size n. The maximum 
number of possible configurations that it can be in before repeating a configuration is 

     | |                       . Since the amount of space required to 

contain and the amount of time required to enumerate all possible configurations is 
polynomial, a machine can simply keep track of all possible configurations and emulate 

the behavior of L while being classified as within P. Thus,    . Like other time and 

space relationships, we do not know if    . 

 
Non-Deterministic Log-Space 

                
 
One of the most representative problems found in Non-Deterministic log-space is 
DIRPATH. You may recall from earlier in the quarter that DIRPATH is defined as the 
following language: 
 

        {                                                 
              } 

 

 
 

Claim              
Simply remembering the name of a vertex takes         space. As such, performing 

an algorithm such as breadth-first search is not viable. Instead we have to come up with 



another algorithm. The key to this is to take advantage of the fact that the algorithm is 
being used by a non-deterministic Turing Machine. 
 
Consider the following algorithm: 

1. Start with node s as the current node 
2. Guess a vertex at random 
3. Check to see if there is an edge between the current node and the guessed node 

o If an edge does not exist, reject 
o If an edge does exist, increment the counter. If the guessed node is t, 

accept. If the counter reaches size n, reject. Otherwise, make the guessed 
node the current node and repeat steps 2 and 3. 

 
The work tape for such an algorithm would appear as such: 
 

 
 
A non-deterministic Turing Machine that runs this algorithm would end up trying all 
possibilities due to its non-deterministic nature. Additionally, if any of the possibilities 
end up in an accept state, the Turing Machine will accept. Regardless of what it tries, 
the machine will always halt due to the rejecting if the counter reaches size n without 
finding node t. The only space required by this algorithm is the amount of space 
necessary to write the current node, the counter, and the next node, each of which only 

take         space. Thus,           . 
 
Theorem   DIRPATH is NL-Complete 
While we are not going to prove it, DIRPATH captures all the difficulty of the NL class. 
The main difficulty of proving NL-Completeness is that reductions would have to run in 

            . 
 

Claim        
Proof   Let M be a non-deterministic log-space Turing Machine. We want to know if on 
input w, does M accept w? Imagine building the following graph: 
 



 
 

       is the node representing the start configuration of M on input w. Each node in the 
graph represents a different possible configuration the M can be in, while each edge 
represents the ability to transition from one configuration to the next. Finally, ACCEPT is 
our own accept node which has edges leading from any accept configuration M can be 
in to it. This graph can be built in polynomial time. As explained earlier, the total number 

of configurations possible is at most      . As such, there will only be       nodes in the 
graph. Once the graph is built, we simply run one of the polynomial-time DIRPATH 

algorithms to find if there’s a path between        and ACCEPT. If there is, then we 
accept. Else, reject. 
 
We looked at DIRPATH and found that it was contained within the class L. However, 
consider the following similar language PATH: 
 

     {                                                   
              } 

 

 
 



The question is, is       ? 

One way to think of this problem is to think of it like being inside a maze. It can be done 
easily if you have enough memory to remember what paths had been tried already, 
such as using breadcrumbs. However, L does not afford enough space to be able to 
remember what had already been tried. 
 
It turns out this problem can be solved in L if given the ability of randomness; such as 
flipping a coin. What happens is that at each point, the coin is flipped to determine 
which path to take. A counter is kept to keep track of how many steps are taken. A 
Turing Machine that does this will have the following attributes: 
 

- If              , then the log-space TM will always reject. 

- If              , then the log-space TM will accept with probability   
 

 
. If 

the TM tries k times, then the probability that it will accept becomes     
 

  
. 

 
What’s important to know is that this algorithm does not work for a directed graph 
efficiently. Consider the following graph: 
 

 
 

There is only a    chance to get from node s to node t. As such, it would have to run for 

   steps in order for it to have the same probability of accepting. However, even an 
undirected graph such as the one below does not have an exponential blow up. 
 

 
 

In order to prove this theorem that       , we need to examine one more property 

of the graph. 
 



Let n = the number of vertices, m = the number of edges, V = { 1, 2, … , n }, and    be 
the degree of vertex i (i.e. the number of neighbors of i). The algorithm tends to spend 
more time at higher degree vertices. We can represent this through the following 

stationary measure:     
  

  
. We know that, due to what’s known as the handshaking 

lemma, that ∑   
 
       (every edge gets counted twice since each edge has two 

endpoints, both of which count it). This means that 

 ∑    
 
     ∑

  

  

 
     

 

  
 ∑   

 
     . We can consider each node i to have    

mass. Every vertex has probability 
 

  
 to send 

 

  
 mass to its neighbors. Each node 

should have equal amounts of mass coming into and leaving it. This is important to 
keep in mind for next time when we actually prove the theorem. 
 

 


