
CSE 431 Theory of Computation Spring 2014

Lecture 16: May 22
Lecturer: James R. Lee Scribe: Riley Klingler

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

16.1 Savitch’s Theorem

Theorem 16.1 For any f(n) ≥ n,

NSPACE(f(n)) ⊆ SPACE(f(n)2)

Proof: Suppose T is a non-deterministic Turing machine which requires at most f(n) space on any input
for some f ≥ n. We will describe a deterministic Turing machine which requires O(f(n)2) space and has the
same behavior as T . We first define the procedure CANYIELD, which given two configurations c1 and c2 of
T and an integer t, accepts if there is a sequence of at most t which T can take starting at c1 and ending at
c2.

CANYIELD(c1, c2, t):
If t = 0:

Accept if c1 = c2.
Else if t = 1:

Accept if T can take a single step from c1 to c2.
Else:

For all possible configurations cm of T :
Accept if CANYIELD(c1, cm, bt/2c) and CANYIELD(cm, c2, dt/2e) both accept.

Reject

Without loss of generality, we can assume that before T accepts, it writes 0’s on each cell of the tape it used
and moves the tapehead to the far left of the tape. Call this configuration cacc. Let c be the the number
of states of T plus the number of symbols in the tape alphabet of T . Then there are at most cf(n) valid
configurations of T (because each configuration is at most f(n) long and each thing in the configuration is
either a member of the tape alphabet or a state of T ). This means T takes at most cf(n) steps on any input
on which it terminates, because otherwise it must repeat a configuration and run forever.

Let cstart be the start configuration of T on a given input w. Then T accepts w if and only if

CANYIELD(cstart, cacc, c
f(n))

accepts. In addition, we can see that this will take at most O(f(n)2) space. This is because each call to
CANYIELD requires O(f(n)) space to store the encoded cm it chooses plus space for its recursive calls
(it will make multiple recursive calls, but only one at any time, so the space for those can be reused).
Because we halve t each time, there will be log(cf(n)) = O(f(n)) recursive calls, so the total space need is
O(f(n))O(f(n)) = O(f(n)2).

16-1



16-2 Lecture 16: May 22

If f(n) is computable with O(f(n)2) space, then we can compute cf(n) before our first call to CANYIELD.
Otherwise, we can add a size parameter s to CANYIELD, and instead of iterating over all configurations of
T , only iterate over configurations which use at most s space. Define cacc,s to be the configuration of T that
is the accept state followed by s zeros. Then we can model T using the following algorithm:

For i = 1, 2, 3 . . .
For each configuration cG with length less than i + 1:

If CANYIELD(c1, cG, c
i+1, i + 1) accepts:

Accept if cG = cacc,i+1

Increment i and loop.
Reject

This algorithm accepts if at any time CANYIELD tells us we can reach an accept state. In addition, it
rejects if we reach an i such that T cannot yield any configuration of length i + 1. As T never uses more
than f(n) space, we will thus reject once i = f(n) + 1, which can only happen when T never reaches an
accept state of length f(n), so we know T rejects this input.

We have proven that whenever f(n) ≥ n, every non-deterministic Turing machine T which requires at most
f(n) space on input of length n can be simulated by a deterministic Turing machine which requires O(f(n))
space, so we have shown PSPACE(f(n)) ⊆ SPACE(f(n)2).

An important corollary to this is that PSPACE (the set of all languages which can be decided using a Turing
machine with polynomial space) is equal to NPSPACE (the set of all languages which can be decided using
a non-deterministic Turing machine with polynomial space).

16.2 Complexity Hierarchy

Now that we have seen PSPACE = NPSPACE, we might wonder how they relate to other complexity
classes.

Theorem 16.2

NP ⊆ PSPACE

Proof: We have previously seen sat is NP-complete. We also know sat ∈ PSPACE because to implement
the brute force solution we only need to store the current possible assignment to the variables, which takes
only linear space. Then, given L ∈ NP , we can reduce it to sat with only a polynomial blowup in size, then
solve the sat instance with polynomial space, allowing us to solve L with polynomial space, so L ∈ PSPACE.
As this is true for all L ∈ NP , NP ⊆ PSPACE.

Definition 16.3 Let

EXPTIME =
⋃
k

TIME(2n
k

).

Theorem 16.4

PSPACE ⊆ EXPTIME



Lecture 16: May 22 16-3

Proof: As discussed in the proof of Savitch’s theorem, A decider which uses f(n) space on input n can take
at most cf(n) steps before halting. Therefore, a Turing machine which uses polynomial space must run in
exponential time.

These theorems give us the following hierarchy of complexity classes:

P ⊆ NP ⊆ PSPACE = NPSPACE ⊆ EXPTIME.

Any of the three subset relations above could in fact be equals. However, the time hierarchy theorem
(discussed on Tuesday) tells us that at least one must be proper, and it is widely expected that all three
inclusions are proper.


