
CSE 431 Theory of Computation Spring 2014

Lecture 15: May 20
Lecturer: James R. Lee Scribe: Amit Burstein

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

15.1 Planar Graph Coloring

Recall that PLANAR-3-COL = {〈G〉 : G is a planar 3-colorable graph }. We want to show that this language
is NP -complete using the following gadget:

Figure 15.1: Uncrossing gadget

Exercise: PLANAR-3-COL is NP -complete

Proof: It is trivial to see that a certificate of this problem could be verified in polynomial time by just
checking the graph’s 3-coloring, so PLANAR-3-COL ∈ NP.

To complete this proof, we will give the following reduction: 3-COL ≤p PLANAR-3-COL, or less formally,

we will construct a new graph Ĝ from the input graph G such that G is 3-colorable ⇐⇒ Ĝ is planar
3-colorable.

To construct Ĝ, we replace all edge crossings in G with the above gadget. This gadget has the key properties
that (1) every valid 3-coloring of it has opposite corners the same color and (2) any such coloring of the
corners extends to a 3-coloring of the entire gadget. These properties can be shown by enumerating the
gadget’s possible 3-colorings.

If an edge in G is crossed by multiple other edges, the gadgets that replace those crossings need to be linked
together at the edges. This propagates the fact that the nodes at either end of the edge must be different
colors.

It is easy to see that Ĝ is planar 3-colorable, and it also easy to see that removing gadgets from such a graph

15-1



15-2 Lecture 15: May 20

gives G. This reduction runs in polynomial time, and thus PLANAR-3-COL is NP-complete.

Lemma 15.1 3-COL ≤p 4-COL

Proof: A simple polynomial time reduction is to add one node to the input graph G which has edges to all
other nodes and had the fourth color.

Lemma 15.2 4-COL ≤p 3-COL

Proof: This reduction exists because 4-COL ∈ NP and 3-COL is NP -complete. You could formulate this
reduction by chaining together multiple reductions:

1. 4-COL ≤p SAT (use a tableau)

2. SAT ≤p 3-SAT

3. 3-SAT ≤p 3-COL

15.2 Space Complexity

For a deterministic TM M , its space complexity is the function f : N → N such that f(n) is the maximum
number of tape cells M uses on any input of length n.

For a nondeterministic TM N , f(n) is the maximum number of tape cells N uses on any computation path
on any input of length n.

Definition 15.3
SPACE(f(n)) = {L : L is a language decided by an O(f(n)) space deterministic TM }
NSPACE(f(n)) = {L : L is a language decided by an O(f(n)) space nondeterministic TM }

Space appears to be more powerful that time because space can be reused whereas, time cannot. For example,
consider the space complextity of SAT. An algorithm that iterates over every possible assignment to φ and
checks if it is satisfied can reuse the tape cells of the TM on each iteration. This algorithm runs in O(n)
space where n is the number of variables in φ.

Definition 15.4
PSPACE =

⋃
k SPACE(nk)

NPSPACE =
⋃

kNSPACE(nk)

15.2.1 Savitch’s Theorem

Whereas whether P = NP is still unknown to us, Savitch’s Theorem can be used to show us that PSPACE
= NPSPACE.



Lecture 15: May 20 15-3

Theorem 15.5 For any f(n) ≥ n, NSPACE(f(n)) ⊆SPACE(f2(n))

Proof: To complete this proof, we want to simulate an f(n) space nondeterministic TM with a deterministic
TM. We define the procedure CANYIELD(c1, c2, t) that determines if a nondeterministic TM can go from
configuration c1 to c2 in t steps in f(n) space. We can take c1 to be the TM’s start configuration, c2 to be
its accepting configuration, and t to be the maximum number of steps the TM could use (cf(n)).

CANYIELD(c1, c2, t):

if t = 0
accept only if c1 = c2

if t = 1
accept if c1 → c2 in one step

else
for all configurations cm using kf(n) space

call CANYIELD(c1, cm, t/2)
call CANYIELD(cm, c2, t/2)
if both accept, accept

reject

Since CANYIELD calls itself recursively and uses c1, c2, cm, and t for each call, O(f(n)) stack space is
needed for each level of recursion. Since each level divides t in half (t started at cf(n)), the stack has
O(log(cf(n))) = O(f(n)) depth. Altogether, the total space used is thus O(f2(n)).

We will complete this proof in the next lecture.


