CSE 431: Introduction to the Theory of Computation
Lecture 13: NP-Completeness Reductions |
5/13/14

Review:

A language L is NP-complete if:

* L ENP

* IfB€ENP,thenB <pL
Cook-Levin Theorem: SAT is NP-complete.

Suppose L is NP-complete. If we know that A € NP and L <, A, then A is NP-complete.

We already know that 3SAT <, CLIQUE. As a reminder:

SAT formula: ¢ = (x1 A (%, VE)) V (x5 VX3)
3SAT formula: ¢ = (x; VX Vx3) A (X, VXL V Xy) ...

Also remember:

¢ = d)start A (paccept A ¢cell A (.bmove

Pmove = /\ \/ (xi,j,a =1 AXiy1,j+1,a = 1..)

1<i,j<nk legal windows

CNF form: (x; VX3 Vx; VX33 VX3) A (Vo V L) AL
Clauses of ORs joined by ANDs.

Recall the Distributive Rule for logic: (a Ab)Vc =(aVb)A(bVc)

Ex:

(anb)V(cAd)
(av(cnAd)A(bV(cAd))
(avon@vad))A((bve)a(bva))
(ave)yAlavd)A(bVve)A(bVd)

Claim: ¢,,,ve Can be written as a CNF = ¢ — ¢cnr

We don’t worry about the size of the expansion since the number of legal tables is a
constant number.



Now define a new language CNFSAT as follows:

CNFSAT = {< ¢ >:CNF formulas that are satisfiable}
U

CNFSAT is NP-complete
Using this knowledge, we can then show that 3SAT is NP-complete.
Claim: 3SAT is NP-complete
Proof:

3SAT € NP:
This is trivially true; if we are given a set of assignments as the certificate, we can easily
verify in polynomial time that they satisfy the formula.

CNFSAT <, 3SAT:

Recall that a CNF formula ¢-yr can have many clauses joined by ANDs, but in each
clause there can be any amount of literals joined by the ORs. We need to somehow
convert ¢.yr to an equivalent 3SAT formula ¢5547 in order to continue the proof. We
can do this in the following way (using the first clause as an example):

Gene = (X VX, VX3 VX, VXg)A(L) .

= ¢asar = (X VX5 VZ1) A(Z1 VX3V 22) A(2Z5 VX7V Xo)

Notice that we have introduced the new variable z in our formula, using both the
variable and its negative in neighboring clauses. This converts the clauses of ¢ yr to a
logically equivalent ¢554r form with clauses of 3 literals.

Aside: For CNF formulas that have clauses shorter than 3 literals, we can still convert
them in the following way:

denr = (x7) = Pasar = (X7 VX7 V x7)

benr = (X6 V X9) = Pasar = (X6 V X6 V Xo)

Now we need to show that ¢ 35,7 is satisfiable iff ¢y is satisfiable.

In one direction, we can easily prove that if ¢y is satisfied, then so is ¢3547. Each
clause is 3 literals and we only need one of them to be true for ¢y r to be satisfied. We
can simply look at each clause and check if one of the original variables is true; if it is,
great, if not, then we can simply set our new variable z to be true. In this way we can
make each clause evaluate to true no matter what.



For the other direction, consider the case that ¢ .y was not satisfied by a given
assignment. We can then try to create a ¢354 that is satisfied with only our new
variable z. This is impossible though! In order to have true clauses, we would have to set
every one of our z variables to 1; this means that in the last clause (z, V x; V x;) z would
evaluate to false and so the entire formula would be false. This implies that at least one
of the original x variables must be true in order for ¢ 3547 to be satisfiable. Since we can
then change our z assignment in the clause with the true variable, the rest of the clauses
will be true and hence ¢347 is satisfied.

~ Qenr IS satisfiable & ¢sgur is satisfiable and CNFSAT <p 3SAT

Since we have shown both properties of NP-completeness, we can now say that 3SAT is
NP-complete.
]

Claim: HAMPATH is NP-complete
Proof:

We have previously shown that HAMPATH € NP, so that leaves us with proving that
3SAT <, HAMPATH.

We make the following claim to show this is true:
o(m)ti
p=CNANC,NC;...ACp, 2 Directed graph G where each clause C,, is in the

form (x; V x, V x3) and the variables go from x; to x,,.

S is the starting node and T is the terminal node.
C1 =X VX3 V)
C, = (X1 VX Vxy)

x1 < 3m + 3 vertices

x2



For this directed graph, each row represents a literal, and the way you traverse the
graph represents a satisfying formula. In example, for the clause C;, we can choose x;
to be true. We traverse the graph from left to right when the variable is true, and when
we see reach the node in the path that is connected to the clause node, we visit that
clause node and then jump back to the next node in the path we were just on.

Similarly, if we have a false variable, we traverse the path from right to left, visiting the
clause node in the same way. Notice that if we tried to traverse from right to left on a
true instance, we would see the clause node, visit it, but then jump back to a node
we’ve already seen; this is not allowed!

After we have fully traversed the graph, we will have a valid HAMPATH having visited all
nodes (including the clause nodes).

For the other side of the proof, we can easily read a satisfying assignment from the way
we traversed the graph as described above: if we are moving from left to right in a path
for x; then it must be the case that x; is assigned to true, and vice versa. The graph is
built in such a way that you must return to the path you were on and not a random path
somewhere later in the graph; if we were able to do that we would more than likely get
stuck!

& ¢ssar has a satisfying assignment < G has a valid HAMPATH

This shows that 3SAT <,, HAMPATH and so HAMPATH is NP-complete.



