
CSE 431:  Theory of computation   Instructor: James Lee 

Lecture 1:  Cantor, set theory, and diagonalization 

We’re all familiar with finite sets, e.g.              }    }, and the various options we can 

perform on them, e.g.            and    }   Or we can consider the power set of   

which is the set of all subsets of  : 

         } 

For instance, if         } then    {    }   }   }     }     }     }       }}  

There are also many infinite sets we’re accustomed to, like the naturals, integers, and rationals: 

            }                      }      {
 

 
          }  

We also have the set of real numbers  .  We can write the real numbers between 0 and 1 using 

their decimal expansion 

[   ]  {                       }}  

 

Sizes of infinity? 

Cantor asked the question of whether there are different sizes of infinite sets.  Two sets   and 

  have the same cardinality if there is a 1-1 correspondence         Recall that a mapping is 

a 1-1 correspondence (or a “bijection”) if  

(i) [it is injective or “into”] For every        with     , we have  ( )   (  )  

(ii) [it is surjective or “onto”] For every     there is an     with  ( )   . 

With this definition in place, we can make a few observations. 

Fact:    and   have the same cardinality. 

Proof:  Consider the 1-1 correspondence       given by  

 ( )   
 

 
 if   is even and    ( )  

   

 
 if   is odd. 

Note that   naturally lists the elements of   as                    



Let’s argue carefully that   is a 1-1 correspondence.  First, if  ( )   (  ) then by the 

formulas above, we must have     .  Hence   is injective (satisfies property (i)).  Now 

consider any integer    .  

If     then        and  (    )   .  If    , then       and  (   )      Thus 

  is surjective as well (satisfies property (ii)).  Putting these together, we see that   is a 1-1 

correspondence. 

   

Definition:  A set   is           if it has the same cardinality as    

Thus above we have proved that   is countable. 

It is a more surprising fact, perhaps, that the rational numbers   are countable. 

To prove this, it helps to have two lemmas. 

Lemma 1:  If   is countable and     is infinite, then   is countable. 

Proof (sketch):  Since   is countable, it is in 1-1 correspondence with  , so it suffices to 

prove that an infinite subset     is countable.  We define a 1-1 correspondence 

      inductively as follows:   ( )     ( ).   Given that  ( )  ( )    ( ) are 

defined, we put  (   )     (    ( )  ( )    ( )}).  One can easily verify that this 

map is 1-1.  A different way of stating this:  We simply sort   and output a list of the 

elements in sorted order. 

Lemma 2 :  If   and   are countable, then so is      

Proof:  Recall the Cartesian product      (   )        }   Since   is countable, we 

may list its elements as               }, and similarly for              }   Now we 

give a list of the elements of the Cartesian product: 

     (     ) (     ) (     ) (     ) (     ) (     )  } 

Here we are ordering the elements of     by the sum of their indices, i.e. by the value 

    for the pair (     ).  First we list the pair with      , then the two pairs with 

     , then the three pairs with      , etc.  The important point is that for any 

element (     ) of    , it occurs at a finite place in the list. 

One can actually describe this 1-1 correspondence by a formula.  Let         be 

given by 

  (     )  
 

 
(     )(     )    



though it seems easier to think about sorting by the sum of the indices. 

Theorem:    is countable. 

Proof:  With Lemmas 1 and 2 in hand, we can easily prove that   is countable.  Notice that 

for any fraction     we can write it as     where     and   and   have no common 

factors, and this representation is unique.  This allows us to put   in 1-1 correspondence 

with a subset of    :  Let the map         be defined by  (
 

 
)  (   ).  But from 

Lemma 2, we know that     is countable (since we know that   is).  Thus from Lemma 1, 

we know that any infinite subset of     is countable.  So since   is infinite, and we have 

put it in 1-1 correspondence with a subset of    , we can conclude that   is countable. 

At this point, one might start to think that all infinite sets are cou table  but o e of Ca tor’s 

amazing insights is that the real numbers are uncountable.   This is proved using 

“d ago al zat o  ” a proof tech  que we w ll see  a y t  es   Let’s prove  t \ for the real 

numbers between 0 and 1. 

Theorem:  [0,1] is uncountable. 

Proof:  Suppose, for the sake of contradiction, that [0,1] is countable.  In that case, we can 

write a list enumerating all these numbers: 

                      

                      

                      

                      

Etc.  Here,     represents the  th digit after the decimal point of the  th number in the list.  

We will derive a contradiction by producing a real number   [   ] that is not on the list.  

We do this simply by defining                    where 

     if       and      if      

Now suppose that   appears somewhere in the purported list above.  It cannot be the  th 

element in the list because it differs from that number in the  th digit, i.e.        by 

construction.  Thus the list is incomplete, contradicting our initial assumption. 

 



Cantor noticed more:  Given any set  , the power set    will always have cardinality bigger 

than  , i.e. there is no surjective (i.e., onto) mapping       .  This will also use 

diagonalization. 

Proof:  Suppose (for the sake of contradiction) there is a surjective map       .  

Consider the subset 

        ( )} 

Now,   is a subset of     So since   is surjective, there must be an element     such that 
 ( )      Now consider two possibilities: 

If     then    ( ) which implies     by the definition of    
But if     then    ( ) which implies that     by the definition of    

Thus we get a contradiction, and no such mapping   cannot exist. 

 

Paradoxes in naïve set theory 

Cantor noticed something fishy about the fact that    always has a larger cardinality than 

 .  If we let  denote the set of all possible sets then it should have the largest cardinality, 

but still it must be that    is even bigger! 

Bertra d Russell set about to resolve th s “paradox ”  I  the process  he fou d a  eve  

s  pler paradox of  aïve set theory   Co s der a barber that shaves all those  e  who do ’t 

shave themselves (and no one else).  If the barber shaves himself, the  he does ’t shave 

h  self   But  f he does ’t shave h  self  the  by def   t o   he shaves h  self!  So such a 

barber ca  ot ex st   S   larly  co s der the set of all sets that do ’t co ta   the selves as a 

member: 

        } 

If     then by definition    .  But if     then    !  So such a set   cannot exist. 

Both of these exa ples  llustrate that  f we allow sets to beco e too b g (or too “powerful”) 

then they can diagonalize against themselves!  We will see the same phenomenon come up 

in computation:  Since computer programs can manipulate and simulate other computer 

programs, there must be limitations on what they could do.  If they were too powerful, they 

could d ago al ze aga  st the selves  lead  g to a co trad ct o    (We’ll see th s very 

clearly soon.) 

 


