
CSE 431 – Theory of Computation. Spring, 2014. Instructor: James R. Lee
ASSIGNMENT 6. Due Thursday, May 21st, in class (or via email to cse431-staff@cs before class starts)

1. Recall the graph 3-coloring problem:

3-COL = 〈 〉 is a 3-colorable graph

Also from class, we saw the problem

PLANAR-3-COL = 〈 〉 is a planar 3-colorable graph

Your goal is to prove that 3-COL PLANAR-3-COL, thereby proving that PLANAR-3COL

is NP-complete. You should use the following gadget to uncross edges:

Do the problem in three parts:

(a) Given colors , observe that there is always a way to 3-color the

graph so that the opposite east-west corners are colored and the opposite north-

south corners are colored . Note that possibly . (That this is true follows

from the two colorings given above.)

(b) Show that any 3-coloring of the gadget must have the property that opposite

corners have the same color.

(c) Use this to reduce 3-COL to PLANAR-3-COL. Remember that if the edges x-y and u-v

cross, then the gadget should remove the edge crossing, but enforce the same

constraints that x/y must be colored differently and u/v must be colored differently.

2. A monomial in variables is a product

 , where the ’s are

natural numbers. An integral polynomial in is a sum of monomials with

integer coefficients. For instance,

 ()

A root () of a polynomial in variables is a sequence of numbers such that

 () . A root is integral if all the ’s are integers.

Consider the language:

INTEGRAL-ROOT = 〈 〉 is a polynomial with an integer root

a) Show that 3-SAT INTEGRAL-ROOT.

b) Does this imply that INTEGRAL-ROOT is NP-complete? What’s the difficulty?

3. So far we have talked about decision problems where we simply want YES or NO

answers, like: Is a Boolean formula satisfiable? Maybe if P=NP then answering such

questions is easy, but actually finding the solution (in this case, the satisfying

assignment) is still hard! In this problem, you will show that this isn’t the case.

a) Show that if P=NP, there is a polynomial time algorithm that, given a Boolean

formula , actually outputs a satisfying assignment. [Hint: If P=NP, then given a

formula , there is poly-time algorithm to see if has a satisfying assignment. Use

this algorithm to FIND a satisfying assignment by figuring it out bit-by-bit. In other

words, figure out a good value for then for and so on. You will do this by

running the satisfiability-checker many times on modifications of .]

b) Show that if P=NP, there is a polynomial-time algorithm that produces a 3-coloring

of a graph is such a coloring exists.

OPTIONAL PROBLEM (You may do this problem for extra credit, OR you can do it instead of

the first three problems!)

Prove that if P=NP, then you can break the RSA cryptosystem

(http://en.wikipedia.org/wiki/RSA_(cryptosystem)) . In other words, show that given

someone’s public key, you can compute their private key in polynomial time.

