
CSE 431 – Theory of Computation.   Spring, 2014.  Instructor:  James R. Lee 
ASSIGNMENT 6.   Due Thursday, May 21st, in class (or via email to cse431-staff@cs before class starts) 

 

1. Recall the graph 3-coloring problem: 

3-COL =   〈 〉    is a 3-colorable graph   

Also from class, we saw the problem 

PLANAR-3-COL =  〈 〉    is a planar 3-colorable graph   

Your goal is to prove that 3-COL    PLANAR-3-COL, thereby proving that PLANAR-3COL 

is NP-complete.  You should use the following gadget to uncross edges: 

 

 
 

Do the problem in three parts:  

(a) Given colors              , observe that there is always a way to 3-color the 

graph so that the opposite east-west corners are colored    and the opposite north-

south corners are colored   .  Note that possibly      .  (That this is true follows 

from the two colorings given above.) 

(b) Show that any 3-coloring of the gadget must have the property that opposite 

corners have the same color. 

(c) Use this to reduce 3-COL to PLANAR-3-COL.  Remember that if the edges x-y and u-v 

cross, then the gadget should remove the edge crossing, but enforce the same 

constraints that x/y must be colored differently and u/v must be colored differently. 

 

 

 

 



2. A monomial in variables            is a product   
    

     
  , where the   ’s are 

natural numbers.  An integral polynomial in            is a sum of monomials with 

integer coefficients.  For instance, 

 (        )             
       

   
      

A root (          ) of a polynomial   in   variables is a sequence of numbers such that 

 (          )   .  A root is integral if all the   ’s are integers. 

Consider the language: 

INTEGRAL-ROOT =   〈 〉     is a polynomial with an integer root   

a) Show that 3-SAT    INTEGRAL-ROOT. 

b) Does this imply that INTEGRAL-ROOT is NP-complete?  What’s the difficulty? 

 

3. So far we have talked about decision problems where we simply want YES or NO 

answers, like:  Is a Boolean formula   satisfiable?  Maybe if P=NP then answering such 

questions is easy, but actually finding the solution (in this case, the satisfying 

assignment) is still hard!  In this problem, you will show that this isn’t the case. 

a) Show that if P=NP, there is a polynomial time algorithm that, given a Boolean 

formula  , actually outputs a satisfying assignment.  [Hint:  If P=NP, then given a 

formula  , there is poly-time algorithm to see if   has a satisfying assignment.  Use 

this algorithm to FIND a satisfying assignment by figuring it out bit-by-bit.  In other 

words, figure out a good value for    then for    and so on.  You will do this by 

running the satisfiability-checker many times on modifications of  .] 

b) Show that if P=NP, there is a polynomial-time algorithm that produces a 3-coloring 

of a graph   is such a coloring exists. 

 

 

OPTIONAL PROBLEM (You may do this problem for extra credit, OR you can do it instead of 

the first three problems!) 

Prove that if P=NP, then you can break the RSA cryptosystem 

(http://en.wikipedia.org/wiki/RSA_(cryptosystem)) .  In other words, show that given 

someone’s public key, you can compute their private key in polynomial time. 


