CSE 431 – Theory of Computation. Spring, 2014. Instructor: James R. Lee ASSIGNMENT 5. Due Thursday, May 15th, in class (or via email to cse431-staff@cs before class starts)

1. Consider the language

TRIPLE-SAT { $\langle \phi \rangle$: ϕ is a Boolean formula that has at least three satisfying assignments } Show that TRIPLE-SAT is NP-complete using a reduction from SAT (which we know is NP-complete).

2. A **vertex cover** in an undirected graph G = (V, E) is a subset of nodes $C \subseteq V$ such that every edge has at least one endpoint in C. A **dominating set** of G is a set of nodes $D \subseteq V$ such that every node of G is in D or has a neighbor in D. Consider the two problems:

VERTEX-COVER = { $\langle G, k \rangle$: G has a vertex cover of size at most k}

DOMINATING-SET = { $\langle G, k \rangle$: G has a dominating set of size at most k }

- a) Prove that both problems are in *NP*.
- b) Prove that VERTEX-COVER \leq_P DOMINATING-SET
- Say that two Boolean formulas on the same set of variables are *output equivalent* if they are true on exactly the same set of assignments to those variables. The *length* of a Boolean formula is the number of literals (occurrences of a variable negated or unnegated) it contains. For instance, the formula (x₁ ∨ x₂) ∧ (x₁ ∨ x₃ ∨ x₂) has length 5. A Boolean formula is *frugal* if no shorter Boolean formula is equivalent to it.

Consider the language FRUGAL-FORMULA = { $\langle \phi \rangle : \phi$ is a frugal Boolean formula}. Show that if P = NP then FRUGAL-FORMULA $\in P$.

[Here's a hint to get you started: Let EQU be the language of pairs of Boolean formulae $\langle \phi, \phi' \rangle$ such that ϕ and ϕ' are ouput-equivalent. Let NOT-EQU be the language of pairs of $\langle \phi, \phi' \rangle$ that are not equivalent. Show that NOT-EQU is in *NP*. So if P = NP then NOT-EQU $\in P$. So EQU $\in P$ (why?). Now think about FRUGAL-FORMULA...]

OPTIONAL PROBLEM (You may do this problem for extra credit, OR you can do it instead of the first three problems!)

Recall the Graph Isomorphism problem: Two graphs H and G are isomorphic if the nodes of H can be reordered so it is identical to G.

Show that if P = NP then the following problem has a polynomial-time solution: Given input graphs H and G that are isomorphic, **find the reordering of** H **that yields** G.

Note that the P and NP involve decision problems (with yes/no answers). But your algorithm should actually output the correct reordering!