CSE 431 – Theory of Computation. Spring, 2014. Instructor: James R. Lee

ASSIGNMENT 2. Due Thursday, April 24th, in class (or via email to cse431-staff@cs before class starts)

- A useless state in a Turing machine is one that is never entered on any input string. Consider the problem of determining whether a Turing machine has any useless states. Formulate this problem as a language and show that it is undecidable.
- 2. Recall the definition of a computable function (Section 5.3 of the book). A language A is **mapping-reducible** to a language B, written $A \leq_m B$ if there is a computable function $f: \Sigma^* \to \Sigma^*$ where for every $w \in \Sigma^*$,

$$w \in A \Leftrightarrow f(w) \in B$$

The function f is called a **reduction** of A to B. One can easily check that if $A \leq_m B$ and B is decidable, then A is decidable as well.

a) Consider the language

 $L = \{ \langle M, w \rangle: M \text{ is a TM that on input } w \text{ ever attempts to move its tape head}$ left when it is on the left-most cell of the tape $\}.$

Show that L is undecidable by giving a reduction from A_{TM} to L.

- b) Give an example of an undecidable language L where $L \leq_m \overline{L}$.
- Uncomputable numbers. Consider Turing machines with alphabet Σ = {0,1} and tape alphabet Γ = {0,1, ■} (here is meant to be the blank symbol). Define the function B : N → N as follows. For each value k, consider all the k-state TMs that halt when started with a blank input tape. Let B(k) be the maximum number of 1s that remain on the tape among all these machines.
 - a) Show that *B* is **not** a computable function.
 - b) Show that *B* grows faster than any computable function in the following sense: If $f : \mathbb{N} \to \mathbb{N}$ is computable, then for some value *k* we must have $B(k) \ge f(k)$. [This means that *B* grows super fast! Note that functions like $f(k) = 2^{2^{2^{2^{2^{-\infty}}}}}$ where there are *k* 2's in this tower **are** computable. B(k) grows faster than any such function.]

OPTIONAL PROBLEM (You may do this problem for extra credit, OR you can do it instead of the first three problems!)

Let A and B be two disjoint languages. Say that a language C splits A and B if $A \subseteq C$ and $B \subseteq \overline{C}$. The language C here acts as a **proof** that A and B are disjoint. Describe two Turing-recognizable languages that cannot be split by any decidable language.