
CSE 431 Spring 2012
Assignment #5

Due: Friday, May 11, 2012

Reading assignment: Finish reading Chapter 7 of Sipser’s text up to just before the section on
the Cook-Levin Theorem. Then read section 9.3 which gives the proof of the Cook-Levin Theorem
that we will do.

Problems:

1. Sipser’s text: Problem 7.6 (both editions).

2. Sipser’s text: 1st edition Problem 7.10; 2nd Edition Problem 7.9.

3. Sipser’s text: Problem 7.7 (both editions).

4. Sipser’s text: Problem 7.11 (both editions).

5. All the computational problems we have described are defined as languages, i.e. yes/no
questions. This problem gives an idea as to why that gives us enough information.
Given a function f : {0, 1}∗ → {0, 1}∗ we say that f is computable in polynomial time iff
there is some TM computing f whose running time is O(nk) for some k. We say that f
is length-preserving if |f(x)| = |x| for every input x. Define the language Lf = {〈x, i〉 |
the i-th bit of f(x) is 1}.

(a) Show that if f is polynomial-time computable then Lf ∈ P .

(b) Show that if f is length-preserving and Lf ∈ P then f is polynomial-time computable.
(This direction holds more generally but this case gives the basic idea of the argument.)

6. (Bonus*) In this question you will show that if an ordinary 1-tape TM M has running time
o(n log n) then L(M) must be regular.

A crossing-sequence is the sequence of states on which, and directions from which, a bound-
ary between two cells is crossed during the course of a computation.

(a) Show that if the lengths of all the crossing sequences for a TM are bounded by some
constant k (independent of the input length) then L(M) is regular. Do this by building
an NFA N to recognize L(M).

(b) Use a pigeonhole argument to argue that for any TM running in o(n log n) time on
any sufficiently long input, there must exist two different cell boundaries for cells that
originally contained the input that have precisely the same crossing sequence in the
computation on that input.

1

(c) Show that if a 1-tape TM M has crossing sequences of arbitrarily large size then it
cannot run in o(n log n) time. To do this, consider a minimal-length string that produces
a long crossing sequence when M is run on it and use part (b) to derive a contradiction
by splicing out a piece of the input string using the repeated crossing sequence.

(d) Finally, put the pieces together to produce the claimed result.

2

