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(Optional)

One of the first analyses of the notion of computability, and certainly the most
influential, is due to Turing.

Alan M. Turing, from “On Computable Numbers, with an
Application to the Entscheidungsproblem, ” 1936

The “computable” numbers may be described briefly as the real numbers whose

expressions as a decimal are calculable by finite means. ... According to my
definition, a number is computable if its decimal can be written down by a
machine. p. 116

[Turing then gives his formal definitions and in particular says that for a
real number or function on the natural numbers to be computable it must be
computable by a machine that gives an output for every input.]

No attempt has yet been made to show that the “computable” numbers
include all numbers which would naturally be regarded as computable. All
arguments which can be given are bound to be, fundamentally, appeals to
intuition, and for this reason rather unsatisfactory mathematically. The real
question at issue is ‘“What are the possible processes which can be carried out in
computing a number?”

The arguments which I shall use are of three kinds.

a. A direct appeal to intuition.

b. A proof of the equivalence of two definitions (in case the new definition has
a greater intuitive appeal). [In an appendix to the paper Turing proves that a
function is calculable by his definition if and only if it is one of Church’s
effectively calculable functions.)

c. Giving examples of large classes of numbers which are computable. ...

[I.] Computing is normally done by writing certain symbols on paper.
We may suppose this paper is divided into squares like a child’s arithmetic
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book. In elementary arithmetic the two-dimensional character of the paper is
sometimes used. But such a use is always avoidable, and I think that it will be
agreed that the two-dimensional character of paper is no essential of computa-
tion. I assume then that the computation is carried out on one-dimensional
paper, i.e. on a tape divided into squares. I shall also suppose that the number
of symbols which may be printed is finite. If we were to allow an infinity of
symbols, then there would be symbols differing to an arbitrarily small extent.
The effect of this restriction of the number of symbols is not very serious. It is
always possible to use sequences of symbols in place of single symbols. Thus
an Arabic numeral such as 17 or 999999999999999 is normally treated as a
single symbol. Similarly in any European language words are treated as single
.symbols (Chinese, however, attempts to have an enumerable infinity of sym-
bols). The differences from our point of view between the single and compound
symbols is that the compound symbols, if they are too lengthy, cannot be
observed at one glance. This is in accordance with experience. We cannot tell
at a glance whether 9999999999999999 and 999999999999999 are the same.

The behaviour of the computer at any moment is determined by the
symbols which he is observing, and his “state of mind” at that moment. We may
suppose that there is a bound B to the number of symbols or squares which the
computer can observe at one moment. If he wishes to observe more, he must
use successive observations. We will also suppose that the number of states of
mind which need be taken into account is finite. The reasons for this are of the
same character as those which restrict the number of symbols. If we admitted an
infinity of states of mind, some of them will be “arbitrarily close” and will be
confused. Again, the restriction is not one which seriously affects computation,
since the use of more complicated states of mind can be avoided by writing
more symbols on the tape.

Let us imagine the operations performed by the computer to be split up
into “simple operations” which are so elementary that it is not easy to imagine
them further divided. Every such operation consists of some change of the
physical system if we know the sequence of symbols on the tape, which of these
are observed by the computer (possibly with a special order), and the state of
mind of the computer. We may suppose that in a simple operation not more
than one symbol is altered. Any other changes can be split up into simple
changes of this kind. The situation in regard to the squares whose symbols may
be altered in this way is the same as in regard to the observed squares. We may
therefore, without loss of generality, assume that the squares whose symbols are
changed are always “observed” squares. '

Besides these changes of symbols, the simple operations must include
changes of distribution of observed squares. The new observed squares must be
immediately recognisable by the computer. I think it is reasonable to suppose
that they can only be squares whose distance from the closest of the immediately
previously observed squares does not exceed a certain fixed amount. Let us say

that each of the new observed squares is within L squares of an immediately
previously observed square.
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CHAPTER 9 Turing Machines

In connection with “immediate recognisability”, it may be thought that
there are other kinds of square which are immediately recognisable. In
particular, squares marked by special symbols might be taken as immediately
recognisable. Now if these squares are marked only by single symbols there can
be only a finite number of them, and we should not upset our theory by
adjoining these marked squares to the observed squares. If, on the other hand,
they are marked by a sequence of symbols, we cannot regard the process of
recognition as a simple process. This is a fundamental point and should be
illustrated. In most mathematical papers the equations and theorems are
numbered. Normally the numbers do not go beyond (say) 1000. It is, therefore,
possible to recognise a theorem at a glance by its number. But if the paper was
very long, we might reach Theorem 157767733443477; then, further on in the
paper, we might find “ ... hence (applying Theorem 157767733443477) we
have ... ”. In order to make sure which was the relevant theorem we should
have to compare the two numbers figure by figure, possibly ticking the figures
off in pencil to make sure of their not being counted twice. If in spite of this it is
still thought that there are other “immediately recognisable” squares, it does not
upset my contention so long as these squares can be found by some process of
which my type of machine is capable. This idea is developed in [III] below.

The simple changes must therefore include:

a. Changes of the symbol on one of the observed squares.
b. Changes of one of the squares observed to another square within L squares
of one of the previously observed squares.

It may be that some of these changes necessarily involve a change of state
of mind. The most general single operation must therefore be taken to be one of
the following:

A. A possible change (a) of symbol together with a possible change of state of
mind. '

B. A possible change (b) of observed squares, together with a possible change
of state of mind.

The operation actually performed is determined, as has been suggested
[above] by the state of mind of the computer and the observed symbols. In
particular, they determine the state of mind of the computer after the operation is
carried out.

We may now construct a machine to do the work of this computer. To
each state of mind of the computer corresponds an “m-configuration” of the
machine. The machine scans B squares corresponding to the B squares
observed by the computer. In any move the machine can change a symbol on a
scanned square or can change any one of the scanned squares to another square
distant not more than L squares from one of the other scanned squares. The
move which is done, and the succeeding configuration, are determined by the
scanned symbol and the m-configuration. ...

[III] We suppose, as in [I], that the computation is carried out on a tape;
but we avoid introducing the “state of mind” by considering a more physical
and definite counterpart of it. It is always possible for the computer to break off
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from his work, to go away and forget all about it, and later to come back and go
on with it. If he does this he must leave a note of instructions (written in some
standard form) explaining how the work is to be continued. This note is the
counterpart of the “state of mind”. We will suppose that the computer works in
such a desultory manner that he never does more than one step at a sitting. The
note of instructions must enable him to carry out one step and write the next
note. Thus the state of progress of the computation at any stage is completely
determined by the note of instructions and the symbols on the tape. That is, the
state of the system may be described by a single expression (sequence of
symbols), consisting of the symbols on the tape followed by A (which we
suppose not to appear elsewhere) and then by the note of instructions. This
expression may be called the “state formula”. We know that the state formula
at any given stage is determined by the state formula before the last step was
made, and we assume that the relation of these two formulae is expressible in the
functional calculus [see Chapter 21 of this text]. In other words, we assume that
there is an axiom A which expresses the rules governing the behaviour of the
computer, in terms of the relation of the state formula at any stage to the state

- formula at the preceding stage. If this is so, we can construct a machine to write
down the successive state formulae, and hence to compute the required number.

Turing, pp. 135-140

B. Emil L. Post on Computability
(Optional)

Post’s analysis of computability was done independently of Turing, though not of
Church. It is therefore surprising how very similar it is to Turing"s analysis in his
paper in Chapter 9 (similarities to our formalization of Turing’s ideas are not so
remarkable since we’ve been influenced by developments since then, including
Post’s paper). Post, too, attempts to justify his formulation in intuitive terms. Note
that, unlike Church, he does not view Church’s Thesis as a definition but claims
that if, as it turned out, the Most Amazing Fact holds, then Church’s Thesis amounts
to a natural law. '

“Finite Combinatory Processes —Formulation 1” *

The present formulation should prove significant in the development of
symbolic logic along the lines of Gédel’s theorem on the incompleteness of

* Received October 7, 1936, The reader should compare an article by A. M. Turing,
“On computable numbers,” shortly forthcoming in the Proceedings of the London
Mathematical Society. The present article, however, although bearing a later date, was
written entirely independently of Turing’s. Editor [of The Journal of Symbolic Logic).
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symbolic logics! and Church’s results concerning absolutely unsolvable
problems.2

We have in mind a general problem consisting of a class of specific
problems. A solution of the general problem will then be one which furnishes
an answer to each specific problem.

In the following formulation of such a solution two concepts are involved:
that of a symbol space in which the work leading from problem to answer is to
be carried out,3 and a fixed unalterable set of directions which will both direct
operations in the symbol space and determine the order in which those directions
are to be applied.

In the present formulation the symbol space is to consist of a two way
infinite sequence of spaces or boxes, i.e., ordinally similar to the series of
integers ..., -3,-2,-1,0, 1,2,3, ... . The problem solver or worker is to move
and work in this symbol space, being capable of being in, and operating in but
one box at a time. And apart from the presence of the worker, a box is to admit
of but two possible conditions, i.e., being empty or unmarked, and having a
single mark in it, say a vertical stroke.

One box is to be singled out and called the starting point. We now further
assume that a specific problem is to be given in symbolic form by a finite
number of boxes being marked with a stroke. Likewise the answer is to be
given in symbolic form by such a configuration of marked boxes. To be
specific, the answer is to be the configuration of marked boxes left at the
conclusion of the solving process.

The worker is assumed to be capable of performing the following
primitive acts: 4

(a) Marking the box he is in (assumed empty),

(b) Erasing the mark in the box he is in (assumed marked),

(c) Moving to the box on his right,

(d) Moving to the box on his left,

(e) Determining whether the box he is in, is or is not marked.

The set of directions which, be it noted, is the same for all specific
problems and thus corresponds to the general problem, is to be of the following
form. It is to be headed:

Start at the starting point and follow direction 1.

It is then to consist of a finite number of directions to be numbered 1, 2, 3, ... n.
The ith direction is then to have one of the following forms:
(A) Perform operation O; [ O; = (a), (b), (c), or (d) ] and then
follow direction j;,
(B) Perform operation (e) and according as the answer is yes or no
correspondingly follow direction j;" or j;”,
(C) Stop.
Clearly but one direction need be of type C. Note also that the state of the
1 Rurt Gédel, [1931].
2 Alonzo Church, [1936].
3 Symbol space, and time. :
4 As well as otherwise following the directions described below.
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symbol space directly affects the process only through directions of type B.

A set of directions will be said to be applicable to a given general
problem if in its application to each specific problem it never orders operation
(a) when the box the worker is in is marked, or (b) when it is unmarked.” A set
of directions applicable to a general problem sets up a deterministic process
when applied to each specific problem. This process will terminate when and
only when it comes to the direction of type (C). The set of directions will then
be said to set up a finite I-process in connection with the general problem: if it
is applicable to the problem and if the process it determines terminates for each
specific problem. A finite 1-process associated with a general problem will be
said to be a I-solution of the problem if the answer it thus yields for each

- specific problem is always correct.

We do not concern ourselves here with how the configuration of marked
boxes corresponding to a specific problem, and that corresponding to its answer,
symbolize the meaningful problem and answer. In fact the above assumes the
specific problem to be given in symbolized form by an outside agency and,
presumably, the symbolic answer likewise to be received. A more self-
contained development ensues as follows. The general problem clearly consists
of at most an enumerable infinity of specific problems. We need not consider
the finite case. Imagine then a one-to-one correspondence set up between the
class of positive integers and the class of specific problems. We can, rather
arbitrarily, represent the positive integer n by marking the first n boxes to the
right of the starting point. The general problem will then be said to be I-given
if a finite 1-process is set up which, when applied to the class of positive
integers as thus symbolized, yields in one-to-one fashion the class of specific
problems constituting the general problem. It is convenient further to assume
that when the general problem is thus 1-given each specific process at its
termination leaves the worker at the starting point. If then a general problem is
1-given and 1-solved, with some obvious changes we can combine the two sets
of directions to yield a finite 1-process which gives the answer to each specific
problem when the latter is merely given by its number in symbolic form.

With some modification the above formulation is also applicable to -
symbolic logics. We do not now have a class of specific problems but a single
initial finite marking of the symbol space to symbolize the primitive formal
assertions of the logic. On the other hand, there will now be no direction of
type (C). Consequently, assuming applicability, a deterministic process will be
set up which is unending. We further assume that in the course of this process
certain recognizable symbol groups, i.e., finite sequences of marked and
unmarked boxes, will appear which are not further altered in the course of the
process. These will be the derived assertions of the logic. Of course the set of
directions corresponds to the deductive processes of the logic. The logic may
then be said to be I-generated.

An alternative procedure, less in keeping, however, with the spirit of
5 While our formulation of the set of directions could easily have been so framed.that

applicability would immediately be assured it seems undesirable to do so for a variety of
reasons.
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symbolic logic, would be to set up a finite 1-process which would yield the nth
theorem or formal assertion of the logic given n, again symbolized as above.
Our initial concept of a given specific problem involves a difficulty which

should be mentioned. To wit, if an outside agency gives the initial finite
marking of the symbol space there is no way for us to determine, for example,
which is the first and which the last marked box. This difficulty is completely
avoided when the general problem is 1-given. It has also been successfully
avoided whenever a finite 1-process has been set up. In practice the meaningful
specific problems would be so symbolized that the bounds of such a
symbolization would be recognizable by characteristic groups of marked and
unmarked boxes.

~ The root of our difficulty however, probably lies in our assumption of an
infinite symbol space. In the present formulation the boxes are, conceptually at
least, physical entities, e.g., contiguous squares. Our outside agency could no
more give us an infinite number of these boxes than he could mark an infinity of
them assumed given. If then he presents us with the specific problem in a finite
strip of such a symbol space the difficulty vanishes. Of course this would
require an extension of the primitive operations to allow for the necessary
extension of the given finite symbol space as the process proceeds. A final
version of a formulation of the present type would therefore also set up
directions for generating the symbol space.6

~ The writer expects the present formulation to turn out to be logically
equivalent to recursiveness in the sense of the Gédel-Church development.” Its
purpose, however, is not only to present a system of a certain logical potency but
also, in its restricted field, of psychological fidelity. In the latter sense wider and
wider formulations are contemplated. On the other hand, our aim will be to
show that all such are logically reducible to formulation 1. We offer this
conclusion at the present moment as a working hypothesis. And to our mind
such is Church’s identification of effective calculability with recursiveness.8

6 The development of formulation 1 tends in its initial stages to be rather tricky. As this
is not in keeping with the spirit of such a formulation the definitive form of this
formulation may relinquish some of its present simplicity to achieve greater flexibility.
Having more than one way of marking a box is one possibility. The desired naturalness
of development may perhaps better be achieved by allowing a finite number, perhaps

two, of physical objects to serve as pointers, which the worker can identify and move
from box to box.

7 The comparison can perhaps most easily be made by defining a 1-function and proving
the definition equivalent to that of recursive function. (See Church, loc. cit., p. 350.) A
1-function f(n) in the field of positive integers would be one for which a finite 1-
process can be set up which for each positive integer n as problem would yield f(n)

as answer, n and f(n) symbolized as above.

8 Cf. Church, loc. cit., pp. 346, 356-58. Actually the work already done by Church and
others carries this identification considerably beyond the working hypothesis stage. But
to mask this identification under a definition hides the fact that a fundamental discovery
in the limitations of the mathematicizing power of Homo Sapiens has been made and
blinds us to the need of its continual verification.
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Out of this hypothesis, and because of it apparent contradiction to all mathema-
tical development starting with Cantor’s proof of the non-enumerability of the
points of a line, independently flows a Godel-Church development. The success
of the above program would, for us, change this hypothesis not so much to a
definition or to an axiom but to a natural law. Only so, it seems to the writer,
can Godel’s theorem concerning the incompleteness of symbolic logics of &
certain general type and Church’s results on the recursive unsolvability of
certain problems be transformed into conclusions concerning all symbolic logics
and all methods of solvability.

Post, 1936



