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A. Turing on Computability
(Optional)

One of the first analyses of the notion of computability, and certainly the most
influential, is due to Turing.

Alan M. Turing, from "On Computable Numbers, with an
Application to the Entscheidungsproblem, " 1936

The "computable"numbersmay be describedbriefly as the real numberswhose
expressionsas a decimalare calculableby [mite means. ... Accordingto my
definition, a number is computable,if its decimalcan be written down bya
machine. p. 116

[Turing then gives his formal definitions and in particular says that for a
real number or function on the natural numbers to be computable it must be
computable by amachine that gives an output for every input.]

No attempt has yet been made to show that the "computable" numbers
include all numbers which would naturally be regarded as computable. All
arguments which can be given are bound to be, fundamentally, appeals to
intuition, and for this reason rather unsatisfactory mathematically. The real
question at issue is "What are the possible processes which can be carried out in
computing a number?"

The arguments which I shall use are of three kinds.
a. A direct appeal to intuition.
b. A proof of the equivalence of two definitions (in case the new definition has

a greater intuitive appeal). [In an appendix to the paper Turing proves that a
function is calculable by his de[mition if and only if it is one of Church's
effectively calculable functions.]

- - ~. Qiving exa!lllll~s_oflarge_classes oLnumber-s-wJ1ich-ar-e-c-Gmputable;--;-;-:

[I.] Computingis normally done by writn1g,certainsymbols on paper.
We may supposethis paperis divided into squares like a child's arithmetic
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SECTION A Turing on Computability 73

book. In elementaryarithmeticthe two-dimensionalcharacterof the paper is
sometimesused. But such a use is alwaysavoidable,and I think that it will be
agreed that thetwo-dimensionalcharacterof paper is no essential of computa-
tion. I assume then that the computationis carried out on one-dimensitmal
paper, i.e. on a tape dividedinto squares. I shall also supposethat the number
of symbolswhichmay be printed is fmite. If we were to allow an.infinity of
symbols, then therewouldbe symbolsdifferingto an arbitrarilysmall extent.
The effect of this restrictionof the numberof symbolsis not very serious. It is
always possible to use sequencesof symbols in place of single symbols. Thus
an Arabicnumeral such as 17 or 999999999999999 is normally treated as a
single symbol. Similarlyin any Europeanlanguagewords are treated as single

. symbols (Chinese,however,attemptsto have an enumerableinfinity of sym-
bols). The differences from our .point of view between the single and compound
symbols is that the compound symbols, if they are too lengthy, cannot be
observed at one glance. This is in accordance with experience. We cannot tell
at a glance whether 9999999999999999 and 999999999999999 are the same.

The behaviour of the computer at any moment is determined by the
symbols which he is observing, and his "state of mind" at that moment. We may
suppose that there is a bound B to the number of symbols or squares which the
computer can observe at one moment. If he wishes to observe more, he must
use successive observations. We will also suppose that the number of states of
mind which need be taken into account is finite. The reasons for this are of the

same character as those which restrict the number of symbols. If we admitted an
infinity of states of mind, some of them will be "arbitrarily close" and will be
confused. Again, the restriction is not one which seriously affects computation,
since the use of more complicated states of mind can be avoided by writing
more symbols on the tape.

Let us imagine the operations performed by the computer to be split up
into "simple operations" which are so elementary that it is not-easy to imagine
them further divided. Every such operation consists of some change of the
.physical system if we know the sequence of symbols on the tape, which of these
are observed by the computer (possibly with a special order), and the state of
mind of the computer. We may suppose that in a simple operation not more
than one symbol is altered. Any other changes can be split up into simple
changes of this kind. The situation in regard to the squares whose symbols may
be altered in this way' is the same as in regard to the observed squares. We may
therefore, without loss of generality, assume that the squares whose symbols are

changed are always "observed" squares. .

Besides these changes of symbols, the simple operations must include

changes of distribution of observed squares. The new observed squares must be
iinmediately recognisable by the computer. I think it is reasonable to suppose
that they can only be squares whose distance from the c1o~estof the immediately
previously observed squares does not exceed a certain fixed amount. Let us say

-~at.each-oLthe~ew o_hservedsquares is within L squares of an immediately
previously observed square. -----
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74 CHAPTER 9 Turing Machines

In connection with "immediate recognisability", it may be thought that
there are other kinds of square which are immediately recognisable. In
particular, squares marked by special symbols might be taken as immediately
recognisable. Now if these squares are marked only by single symbols there can
be only a fmite number of them, and we should not upset our theory by
adjoining these marked squares to the observed squares. If, on the other hand,
they are marked by a sequence of symbols, we cannot regard the process of
recognition as a simple process. This is a fundamental point and should be
illustrated. In most mathematical papers the equations and theorems are
numbered. Normally the numbers do not go beyond (say) 1000. It is, therefore,
possible to recognise a theorem at a glance by its number. But if the paper was
very long, we might reach Theorem 157767733443477; then, further on in the
paper, we might find" ... hence (applying Theorem 157767733443477) we
have. .. ". In order to make sure which was the relevant theorem we should

have to compare the two numbers figure by figure, possibly ticking the figures
off in pencil to make sure of their not being counted twice. If in spite of this it is
still thought that there are other "immediately recognisable" squares, it does not
upset my contention so long as these squares can be found by some process of
which my type of machine is capable. This idea is developed in [ill] below.

The simple changes must therefore include:
a. Changes of the symbol on one of the observed squares.
b. Changes of one of the squares observed to another square within L squares

of one of the previously observed squares.
It may be that some of these changes necessarily involve a change of state

of mind. The most general single operation must therefore be taken to be one of
the following:
A. A possible change (a) of symbol together with a possible change of state of

mind. .

B. A possible change (b) of observed squares, together with a possible change
of state of mind.

The operation actually performed is determined, as has been suggested
[above] by the state of mind of the computer and the observed symbols. In
particular, they determine the state of mind of the computer after the operation is
carried out.

We may now construct a machine to do the work of this computer. To
each state of mind of the computer corresponds an "m-configuration" of the
machine. The machine scans B squares corresponding to the B squares
observed by the computer. In any move the machine can change a symbol on a
scanned square or can change anyone of the scanned squares to another square
distant not more than L squares from one of the other scanned squares. The
move which is done, and the succeeding configuration, are determined by the
scanned symbol and the m-configuration. ...

[ill] We suppose, as in [I], that the computation is carried out on a tape;

-- _b~!_weav~id i.r1!!"()~,!~i!1_gthe "st~te ()f mind" by considering a more_£hysic..~-
and definite counterpart of it. It is always possible for the computerto break off
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from his work, to go away and forgetall aboutit, and later to come back and go
on with it. If he does this he must leavea note of instructions(written in some
standardform)explaininghow the workis to be continued. This note is the
counterpartof the"stateof mind".. Wewillsupposethatthecomputerworksin
such a desultorymannerthat he never does morethan one step at a sitting. The
note of instructionsmust enablehim to carry out one step and write the next
note. Thus the state of progressof the computationat any stage.is completely
determinedby the note of instructionsand the symbolson the tape. That is, the
state of the system maybe describedby a singleexpression(sequenceof
symbols),consistingof the symbolson the tape followedby 1:1(whichwe
supposenot to appear elsewhere)and then by the note of instructions. This
expressionmay be called the "state formula". We know that the stateformula
at any given stage is determinedby the stateformulabefore the last step was
made, an~we assumethat the relationof these two formulae is expressible in the
functionalcalculus [seeChapter21 of this text]. In other words, we assume that
there is an axiom A whichexpressesthe rules governingthe behaviour of the
computer, in terms of the relation of the state formula.atany stage to the state

. formulaat theprecedingstage. If thisis so,wecanconstructa machineto write
down the successivestate formulae,andhence to computethe requirednumber.

Turing, pp. 135-140

B. Emil L. Post on Computability
(Optional)

Post's analysis of computability was d<meindependently of Turing, though not of
Church. It is therefore surprising how very similar it is to Turing"s analysis in his
paper in Chapter 9 (similarities to our formalization of Turing's ideas are not so
remarkable since we've. been influenced by developments since then, including
Post's paper). Post, too, attempts to jl1stify his formulation in intuitive terms. Note
that, unlike Church, he does not view Church's Thesis as a definition but claims
that if, as it turned out, the Most Amazing Fact holds, then Church's Thesis amounts
to a naturallaw. .

"Finite Combinatory Processes -Formulation I" *

Thepresentformulationshouldprovesignificantin thedevelopmentof
symboliclogicalongthelinesof Godel'stheoremonthe.incompletenessof

... Received October 7, 1936. The reader should compare an article by A. M. Turing,
"()n-computab1e-nUIIibets~''-BbortlyfoIttfco.m:inglfit11cPr6ceeclinlnJf~naOlr---~---
Mathematical Society. The present article, however, although bearing a later date, was
written entirely independently of Turing's. Editor [of 'The Journal of Sym~olic Logic].
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symbolic logicst and Church's results concerning absolutely unsolvable
problems.2

We have in mind a general problem consisting of a class of specific

problems. A solution of the general problem will then be one which furnishes
an answer to each specific problem.

In the following formulation of such a solution two concepts are involved:
that of a symbol space in which the work leading from problem to answer is to
be carried out,3 and a fixed unalterable set of directions which will both direct

operations in the symbol space and determine the order in which those directions
are to be applied.

In the present formulation the symbol space is to consist of a two way
infinite sequence of spaces or boxes, i.e., ordinally similar to the series of
integers ... ,-3, -2, -1, 0, 1,2,3,... . The problem solver or worker is to move
and work in this symbol space, being capable of being in, and operating in but
one box at a time. And apart from the presence of the worker, a box is to admit
of but two possible conditions, i.e., being empty or unmarked, and having a
single mark in it, say a vertical stroke. .

One box is to be singled out and called the starting point. We now further
assume that a specific problem is to be given in symbolic form by a finite
number of boxes being marked with a stroke. Likewise the answer is to be
given in symbolic form by such a configuration of marked boxes. To be
specific, the answer is to be the configuration of marked boxes left at the
conclusion of the solving process.

The worker is assumed to be capable of performing the following
primitive acts: 4

(a) Marking the box he is in (assumed empty),
(b) Erasing the mark in the box he is in (assumed marked),
(c) Moving to the box on his right;
(d) Moving to the box on his left,
(e) Determining whether the box he is in, is or is not marked.
The set of directions which, be it noted, is the same for all specific

problems and thus corresponds to the general problem, is to be of the following
form. It is to be headed:

Start at the starting point and follow direction 1.
It is then to consist of a finite number of directions to be numbered 1,2,3, ... n.
The ith direction is then to have one of the following forms:

(A) Perform operation OJ [OJ = (a), (b), (c), or (d) ] and then
follow direction jj,

(B) Perform operation (e) and according as the answer is yes or no

correspondingly follow direction jj' or hU,
(C) Stop.

Clearly but one direction need be of type C. Note also that the state of the

I KurtGOdel,[1931].
- - --- -2 A1on:tCfChurch-;ii936]. - -- - -

3 Symbol space, and time. .

4 As wel.Ias otherwise following the directions described below.

-- -.--
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88 CHAPTER 10 The Most Amazing Fact and Church's Thesis

symbol space directly affectsthe processonly through directionsof type B.
A set of directionswill be said to be applicableto'a given general

problem if in its applicationto each specificproblemit never orders operation
(a) when the box the worker is in is marked,or (b) when it is unmarked.5 A set
of directions applicableto a generalproblemsets up a deterministicprocess
when applied to each specificproblem. This processwill terminate when and
only when it comes to the directionof type (C). The set of directions will then
be said to set up a fmite I-process in connectionwith the general problem if it
is applicable to the problem and if theprocess it determines terminatesfor each
specific problem. A finite I-process associatedwith a general problem will be
said to be a I-solution of the problem if the answerit thus yields for each

.' specific problem is always correct.
We do not concern ourselves here with how the configuration of marked

boxes corresponding to a specific problem, and that corresponding to its answer,
symbolize the meaningful problem and answer. In fact the above assumes the
specific problem to be given in symbolized form by an outside agency and,
presumably, the symbolic answer likewise to be received. A more self-
contained development ensues as follows. The general problem clearly consists
of at most an enumerable infinity of specific problems. We need not consider
the [mite case. Imagine then a one-to-one correspondence set up between the
class of positive integers and the class of specific problems. We can, rather
arbitrarily, represent the positive integer n by marking the first n boxes to the
right of the starting point. The general problem will then be said to be I-given
if a finite I-process is set up which, when applied to the class of positive
integers as thus symbolized, yields in one-to-one fashion the class of specific
problems constituting the general problem. It is convenient further to assume
that when the general problem is thus I-given each specific process at its
termination leaves the worker at the starting point. If then a general problem is
I-given and I-solved, with some obvious changes we can combine the two sets
of directions to yield a finite I-process which gives the answer to each specific
problem when the latter is merely given by its number in symbolic form.

With some modification the above formulation is also applicable to
symbolic logics. We do not now have a class of specific problems but a single
initial finite marking of the symbol space to symbolize the primitive formal
assertions of the logic. On the other hand, there will now be no direction of
type (C). Consequently, assuming applicability, a deterministic process will be
set up which is unending. We further assume that in the course of this process

certain recognizable symbol groups, i.e., finite sequences of marked and
unmarked boxes, will appear which are not further altered in the course of the
process. These will be the derived assertions of the logic. Of course the set of
directions corresponds to the deductive processes of the logic. The logic may

then be said to be I-generated. .

An alternative procedure, less in keeping, however, with the spirit of

5 While our formulation of th~--;~t-~fdirection;-could easily have been so framed.th~t
applicability would immediately be assured it seems undesirable to do so for a variety of
reasons.
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symbolic logic, wouldbe to set up a fmite I-process whichwould yield the nth
theorem or formal assertionof the logic givenn, again symbolizedas above.

Our initial conceptof a givenspecificprobleminvolves a difficulty which
should be mentioned. To wit, if an outsideagencygives the initial finite
marking of the symbolspacethere is no way for us to determine,for example,
which is the first and whichthe last markedbox. This difficulty is completely
avoided when the generalproblemis I-given. It has also been successfully
avoided whenever a fmite I-processhas been set up. In practice the meaningful
specific problems wouldbe so symbolizedthat the bounds of such a
symbolization wouldbe recognizableby charaCteristicgroups of marked and
unmarked boxes.

. . The root of our difficultyhowever,probablylies in our assumptionof an
infinite symbol space. In the presentformulationthe boxes are, conceptuallyat
least, physical entities,e.g., contiguoussquares. Our outside agency could no
more give us an infinitenumberof these boxes than he could mark an infmity of
them assumed given. If thenhe presentsus with the specific problem in a fmite
strip of such a symbolspacethe difficultyvanishes. Of course this would
require an extension of the primitiveoperationsto allow for the necessary
extension of the givenfmite symbolspace as the process proceeds. A fmal
version of a formulationof the present type would therefore also set up
directions for generatingthe symbol space.6

. The writer expects the present formulation to turn out to be logically
equivalent to recursiveness in the sense of the Godel-Church development.7 Its
purpose, however, is not only to present a system of a certain logical potency but
also, in its restricted field, of psychological fidelity. In the latter sense wider and
wider formulations are contemplated. On the other hand, our aim will'be to
show that all such are logically reducible to formulation 1. We offer this
conclusion at the present moment as a working hypothesis. And to our mind
such is Church's identification of effective calculability with recursiveness.8

6 The development of formulation 1 tends in its initial stages to be rather tricky. As this
is not in keeping with the spirit of such a formulation the definitive form of this

formulation may relinquish some of its present simplicity to achieve greater flexibility.
Having more than one way of marking a box is one possibility. The desired naturalness
of development may perhaps better be achieved by aIlowing a finite number, perhaps
two, of physical objects to serve as pointers, which the worker can identify and move
from box to box.

7 The comparison can perhaps most easily be made by defining a I-function and proving
the definition equivalent to that of recursive function. (See Church, lococit., p. 350.) A
I-function f(n) in the field of positive integers would be one for which a finite 1-

process can be set up which for each positive integ~r n as problem would yield f(n)
as answer, nand f(n) symbolized as above.

8 Cf. Church, lococit., pp. 346, 356-58. ActuaIly the work already done by Church and
others carries this identification considerably beyond the working hypothesis stage. But

~~m~skthis identification under a definition hides the fact that a fundamental discovery
in the limitauons'oftlie'matheniatiCiZing power oftlomo-Sapiens-has-been-macle-and--- ,-
blindsus to the needof its continualverification. .
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Out of this hypothesis,andbecause of it apparentcontradictionto all mathema-
tical developmentstartingwith Cantor's proof of the non-enumerabilityof the
points of a line, independentlyflows a G6del-Churchdevelopment. The success
of the aboveprogram would,for us, change this hypothesisnot so much to a
definition or to an axiombut to a naturallaw. Only so, it seems to the writer,
can G6del's theoremconcerningthe incompletenessof symbolic logics of f.
certain general type and Church's results on the recursiveunsolvability of
certain problems be transformedinto conclusionsconcerningall symbolic logics
and all methods of solvability.

Post, 1936
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