
Lecture 25	
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As a supplement to Paul Beame’s guest lecture, here are a 
few slides of mine on roughly the same topics.  Again, this 
won’t be exactly the same as what he did or as what’s in the 
book, but hopefully another perspective will help clarify it all.	



159	





Boolean Circuits	



Directed acyclic graph	



Vertices = Boolean logic gates (∧, ∨, ¬, …)!
Multiple input bits (x1, x2, … )	


Single output bit (w)	



Gate values as expected (e.g. by induction on depth to xi’s)	
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∧! ¬! ∨!
x1!

x2!

w!



Boolean Circuits	



Two Problems:	


	

Circuit Value: given a circuit and an assignment of ���
values to its inputs, is its output = 1?	



	

Circuit SAT: given a circuit, is there an assignment of 
values to its inputs such that output = 1? 	
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∧! ¬! ∨!
x1!

x2!

w!



Boolean Circuits and Complexity	



Two Problems:	



	

Circuit Value: given a circuit and an assignment of ���
values to its inputs, is its output = 1?	



	

Circuit SAT: given a circuit, is there an assignment of 
values to its inputs such that output =1? 	



Complexity:	


	

Circuit Value Problem is in P	



	

Circuit SAT Problem is in NP	


Given implementation of computers via Boolean circuits, it 
may be unsurprising that they are complete in P/NP, resp.	
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∀ L ∈ P, L ≤p CVP 	



Let M be a 1-tape, poly time TM.  WLOG M accepts at left end of tape. 
“History” of M on input x:	
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 T = nk	



T
 =

 n
k	



a b q,c 

q’,b 

Every cell in tableau is a simple, discrete 
function of 3 above it, e.g., if δ(q,c) = (q’,e,-1):	



b q,c d 

e 

Bool encoding of cell content;  fixed circuit 
computes new cell; replicate it across tableau	



← x →	



qaccept?	





Some Details	



For q ∈ Q, a ∈ Γ,1 ≤ i,j ≤ T, let 	


	

state(q,i,j) = 1if M in state q at time i w/ head in tape cell j, and���
letter(a,i,j) = 1 if tape cell j holds letter a at time i.	



writes(i,j) = ∨q ∈ Q state(q,i,j)	


letter(b,i,j) = (¬writes(i,j) ⋀ bi-1,j) ⋁ 	



                    (writes(i,j) ⋀ ∨(q,a) state(q,i-1,j) ⋀ letter(a,i-1,j)) ���
               where the “or” is over {(q,a) | (-,b,-) = δ(q,a)} 	



state(p,i,j) = ∨(q,a,d) state(q,i-1,j-d) ⋀ letter(a,i-1,j-d), ���
              where the “or” is over {(q,a,d) | (p,-,d) = δ(q,a)} , d = ±1	



Row 0: initial config; columns -1,T+1: all false	



Output: state(qaccept,T,1)	
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Again, not exactly the 
version in the book, 
but close in spirit…	



write cell i @ step j	



no head, no change���

“or” configs writing “b”	



“or” configs entering p	





Result is something vaguely like this:	
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Similarly: ∀L∈NP, L ≤p Circuit-SAT 	



Let M be a 1-tape, poly time NTM.  WLOG M accepts at left end of tape. 
“History” of M on input x:	
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nk	



nk
	



a b q,c 

q’,b 

Every cell in tableau is a simple, discrete 
function of 3 above it, plus 1 ND choice bit; 
e.g., if (q’,e,L) ∈ δ(q,c)  :	



b q,c d 

e 

Bool encoding of cell content;  fixed circuit 
computes new cell; replicate it across tableau	



qaccept?	



N
D

 b
its
	



← x →	



Choice 1	





TM input → circuit constants;  ���
circuit inputs are the choice bits; ���
circuit is satisfiable iff ∃ seq of choices s.t. NTM accepts	



Additionally, assume NTM has only 2 nondet choices at each step.	


For q ∈ Q, a ∈ Γ,1 ≤ i,j ≤ T, state(q,i,j), letter(a,i,j) as before.  Let	



	

choice(i) = 0/1define which ND choice M makes at step i 	



Then, letter() and state() circuits change to incl choice, e.g.:	



state(p,i,j) = ¬choice(i-1) ⋀ (∨(q,a,d) state(q,i-1,j-d) ⋀ letter(a,i-1,j-d)) ⋁	



                     choice(i-1) ⋀ (∨(q’,a’,d’) state(q’,i-1,j-d’) ⋀ letter(a’,i-1,j-d’)) , ���
            where the “ors” are over 	


	

 	

 	

{(q,a,d)   | (p,-,d) = δ(q, a, choice=0)} ,	


	

 	

 	

{(q’,a’,d’) | (p,-,d’) = δ(q’, a’, choice=1)} ,  d = ±1	



AND	



Some Details	
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Correctness	



Poly time reduction: 	



	

Given δ, key subcircuit is fixed, size O(1).  Calculate n = 
input length, T = nk. Circuit has O(T2) = O(n2k) copies of 
that subcircuit, (plus some small tweaks at boundaries).  	



Circuit exactly reflects M’s computation, given the choice 
sequence.  So, if M accepts input x, then there is a choice 
sequence s.t. circuit will output 1, i.e., the circuit is 
satisfiable. Conversely, if the circuit is satisfiable, then any 
satisfying input constitutes a choice sequence leading M to 
accept x.	



Thus, Circuit-SAT is NP-complete.	
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(w1⇔(x1∧x2))∧(w2⇔(¬w1))∧(w3⇔(w2∨x1))∧w3	



Replace with 3-CNF Equivalent:	



∧! ¬! ∨!
x1!

x2! w1! w2! w3!

Circuit-SAT ���
≤p 3-SAT	



x1	

 x2	

 w1	

 x1∧x2	

 ¬(w1⇔(x1∧x2))	



0	

 0	

 0	

 0	

 0	



0	

 0	

 1	

 0	

 1	

 ← ¬x1 ∧ ¬x2 ∧   w1	



0	

 1	

 0	

 0	

 0	



0	

 1	

 1	

 0	

 1	

 ← ¬x1 ∧    x2 ∧   w1	



1	

 0	

 0	

 0	

 0	



1	

 0	

 1	

 0	

 1	

 ←   x1 ∧  ¬x2 ∧   w1	



1	

 1	

 0	

 1	

 1	

 ←   x1 ∧     x2 ∧ ¬w1	



1	

 1	

 1	

 1	

 0	



¬clause  
↓ 

 Truth Table 
↓ 

 DNF   
↓ 

 DeMorgan 
↓ 

CNF 

∧! ¬! ∨!f(                   ) = (x1∨x2∨¬w1)∧(x1∨¬x2∨¬w1)∧(¬x1∨x2∨¬w1)∧(¬x1∨¬x2∨w1)…	



Build truth table clause-by-clause vs whole formula, so n*23 vs 2n rows 	
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Correctness of “Circuit-SAT ≤p 3-SAT”	



Summary of reduction: Given circuit, add variable for every gate’s value, 
build clause for each gate, satisfiable iff gate value variable is appropriate 
logical function of its input variables, convert each to CNF via standard 
truth-table construction. Output conjunction of all, plus output variable.  
Note: as usual, does not know whether circuit or formula are satisfiable or not; 
does not try to find satisfying assignment.	


Correctness:	


Show it’s poly time computable: A key point is that formula size is linear 
in circuit size; mapping basically straightforward; details omitted.  	


Show c in Circuit-SAT iff f(c) in SAT: ���
(⇒) Given an assignment to xi’s satisfying c, extend it to wi’s by 
evaluating the circuit on xi’s gate by gate.  Show this satisfies f(c). ���
(⇐) Given an assignment to xi’s & wi’s satisfying f(c), show xi’s satisfy c 
(with gate values given by wi’s).	


Thus, 3-SAT is NP-complete.	




