
Lecture 19	
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The class NP	



Definition: 	


NP = ∪k≥1Nondeterministic-TIME(nk)	



I.e., the set of (decision) problems solvable by 
computers in Nondeterministic polynomial time.  I.e., 
L ∈ NP iff there is a nondeterministic algorithm 
deciding L in time T(n) = O(nk) for some fixed k 
(i.e., k is independent of the input).	





Alternate Views of Nondeterminism	



NTM – there is a path…	



Parallel – make the tree	



Search – look for a path (or sat-ing assignment or clique or…) 	



Guess and Check	



Polynomial Verifier	
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Alternate Way To Define NP	



A language L is polynomially verifiable iff there is a polynomial 
time procedure v(-,-), (the “verifier”) and an integer k such 
that 	



for every x ∈ L there is a “hint” h with |h| ≤ |x|k such that v(x,h) = YES ���
and	


for every x ∉ L there is no hint h with |h| ≤ |x|k such that v(x,h) = YES	



(“Hints,” sometimes called “certificates,” or “witnesses”, are just strings.)	



Equivalently:	



There is some integer k and language Lv in P s.t.: 	


           L = { x | ∃y, |y| ≤ |x|k ⋀〈x,y〉 ∈ Lv }	





Example: Clique	



“Is there a k-clique in this graph?”	


any subset of k vertices might be a clique	


there are many such subsets, but I only need to find one	



if I knew where it was, I could describe it succinctly, e.g. 
"look at vertices 2,3,17,42,...", 	



I'd know one if I saw one: "yes, there are edges between ���
2 & 3, 2 & 17,... so it's a k-clique”	



this can be quickly checked	


And if there is not a k-clique, I wouldn’t be fooled by a 
statement like “look at vertices 2,3,17,42,...”  	
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More Formally: CLIQUE is in NP	



procedure v(x,h)	


if 	


    x is a well-formed representation of  a graph ���
    G = (V, E) and an integer k, 	


and 	


    h is a well-formed representation of a k-vertex ���
    subset U of V, 	


and 	


	

U is a clique in G, 	



then output "YES"	


else output "I'm unconvinced" 	
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Is it correct?	



For every x = (G,k) such that G contains a k-clique, 
there is a hint h that will cause v(x,h) to say YES, 
namely h = a list of the vertices in such a k-clique	



and	


No hint can fool v into saying yes if either x isn't 
well-formed (the uninteresting case) or if x = (G,k) 
but G does not have any cliques of size k (the 
interesting case)	





The 2 defns are equivalent	



Theorem: L in NP iff L is polynomially verifiable	



Pf: ⇒ Let M be a poly time NTM for L, x an input to M, |x| = 
n.  If x in L there is an accepting computation history y for 
M on x. If M runs T = nO(1) steps on x, then y is T+1 
configs, each of length ~T, so |y| = O(T2) = nO(1). 
Furthermore, a deterministic TM can check that y is an 
accepting history of M on x in poly time.  Critically, if x is 
not accepted, no y will pass this check.  Thus, L is poly 
time verifiable. ���
(We could equally well let y encode the sequence of nondeterministic 
choices M makes along some accepting path.)	
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The 2 defns are equivalent (cont.)	



Theorem: L in NP iff L is polynomially verifiable	



Pf: ⇐ Suppose L is poly time verifiable, V is a time nd -time 
TM implementing the verifier, and k is the exponent in the 
hint length bound.  Consider this TM:	



M: on input x, nondeterministically choose a string y of 
length at most |x|k, then run V on ⟨x,y⟩; accept iff it does.	



Then M is an NTM accepting L: By defn of poly verifier���
x ∈ L iff ∃y, |y| ≤ |x|k ⋀ V accepts 〈x,y〉, and M tries 
(nondeterministically) all such y’s, accepting iff it finds one 
that V accepts.	



Time bound for M:  ??	
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(|x|+|x|k+3)d  =  O(nkd) = nO(1)	





Example: SAT	



“Is there a satisfying assignment for this Boolean 
formula?”	



any assignment might work      	



there are lots of them     	



I only need one     	



if I had one I could describe it succinctly, e.g., “x1=T, x2=F, ..., xn=T"      	


I'd know one if I saw one: "yes, plugging that in, I see formula = T...” 
this can be quickly checked	



And if the formula is unsatisfiable, I wouldn’t be fooled by , “x1=T, 
x2=F, ..., xn=F"      	
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More Formally: SAT ∈ NP	



Hint: the satisfying assignment A	



Verifier: v(F,A) = syntax(F,A) && satisfies(F,A)	


Syntax: True iff  F is a well-formed formula & A is a truth-
assignment to its variables	



Satisfies: plug A into F and evaluate	



Correctness:	


If F is satisfiable, it has some satisfying assignment A, and 
we’ll recognize it	



If F is unsatisfiable, it doesn’t, and we won’t be fooled	





Alternate Views of Nondeterminism	



NTM – there is a path…	



Parallel – make the tree	



Search – look for a path (or sat-ing assignment or clique or…) 	



Guess and Check	



Polynomial Verifier	
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The complexity class NP	



NP consists of all decision problems where 	



You can verify the YES answers efficiently (in polynomial 
time) given a short (polynomial-size) hint	



And	



No hint can fool your polynomial time verifier into saying 
YES for a NO instance	



(implausible for all exponential time problems)	



one among exponentially many; 
know it when you see it!
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Keys to showing  that ���
a problem is in NP	



What's the output?  (must be YES/NO)	



What's the input?  Which are YES?	


For every given YES input, is there a hint that would help?  Is 
it polynomial length?	



OK if some inputs need no hint	



For any given NO input, is there a hint that would trick you?	





Example	



ATM is in NP	



Input: a pair <M,w>	


Output: yes/no does M accept w	



Hint: y, an accepting computation history of M on w	


Clearly, such a y exists for all accepted x  and only accepted 

x, so we accept the right x’s and reject the rest.	



And it’s fast – checking successive configs in the history is at 
worst, quadratic in the length of the history, so the 
verifier for <x,y> runs in time |<x,y>|O(1).	
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FALSE	





3’ UTR	
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