
Lecture 12

Why TM’s?
Programs are OK too

Fix Σ = printable ASCII

Programming language with ints, strings & function calls

“Computable function” = always returns something

“Decider” = computable function always returning 0 / 1

“Acceptor” = accept if return 1; reject if ≠1 or loop

AProg = {<P,w> | program P returns 1 on input w }

HALTProg = {<P,w> | prog P returns something on w }
...

ATM (≤T vs ≤m) HALTTM

f(<M,w>) = <M’,w>

Halt?

M,w

Sim M on w

acc

accrej

rej

R:

S:

Yes

From Lecture 07

M’ = M, but
replace qreject
by a loop

Halt?

M,w

accrej

R:

S’:

Yes

<M’,w> Build M’

sub f(P,w){
// build P’
pn = ...//(find P’s name)
pp = “sub ” + pn + “prime(x){”
pp += P
pp += “if “+pn+”(x) return 1;”
pp += “while True {;}}”
val = “<” + pp + “,” + w + “>”
return val

AProg ≤m HALTProg
f(<P,w>) = <P’,w>

sub Pprime(x){
sub P(y){
...
}
if P(x) return 1;
while True { ; }

}

(copy
of P)

Programs vs TMs

Everything we’ve done re TMs can be rephrased re programs

From the Church-Turing thesis (hopefully made concrete in earlier
HW) we know they are equivalent.

Above example shows some things are easier with programs.

Others get harder (e.g., “Universal TM” is a Java interpreter written
in Java; “configurations” and “computation histories” are much
messier)

TMs are convenient to use here since they strike a good balance

But I hope you can mentally translate between the two; decidability/
undecidability of various properties of programs are obviously
more directly relevant.

Mapping Reducibility

Defn: A is mapping reducible to B (A ≤m B) if there is
computable function f such that w ∈ A ⇔ f(w) ∈ B

A special case of ≤T :
Call subr only once; its answer is the answer

Theorem:
A ≤m B & B decidable (recognizable) ⇒ A is too

A ≤m B & A undecidable (unrecognizable) ⇒ B is too

A ≤m B & B ≤m C ⇒ A ≤m C

Most reductions we’ve seen were actually ≤m reductions.

Other Examples of ≤m

ATM ≤m REGULARTM f(<M,w>) = <M2>
Build M2 so L(M2) = Σ* / { 0n1n }, as M accept/rejects w

EMPTYTM ≤m EQTM f(<M>) = <M, Mreject>
L(Mreject) = ∅, so equiv to M iff L(M) = ∅

ATM ≤m MPCP
MPCP ≤m PCP

ATM ≤m EMPTYTM f(<M,w>) = <M1>
Build M1 so L(M1) = {w} / ∅, as M accept/rejects w

5.2

Pf: To show: ATM ≤T EMPTYTM

On input <M,w> build M’ :
Do not run M or M’. (That whole “halting
thing” means we might not learn much if we
did.) But note that L(M’) is/is not
empty exactly when M does not/does
accept w, so knowing whether L(M’) =
∅ answers whether <M,w> is in ATM.
And our hypothetical “EMPTYTM”
subroutine applied to M’ tells us just
that. I.e., ATM ≤T EMPTYTM

EMPTYTM is undecidable

M’ on input x:
 1. erase x
 2. write w
 3. run M on w
 4. if M accepts w, then accept x
 5. otherwise, reject x

 Σ*, if M accepts w
 ∅, if M rejects w

L(M’) =

EMPTYTM = { <M> | M is a TM s.t. L(M) = ∅ }

From Lecture 07
NB: it shows ATM ≤m (EMPTYTM)C

REGULARTM is undecidable

REGULARTM = { <M> | M is a TM s.t. L(M) is regular }
Pf: To show: ATM ≤T REGULARTM

On input <M,w> build M’ :
Do not run M or M’. (That whole “halting

thing” ...) But note that L(M’) is/is not
regular exactly when M does/does not
accept w, so knowing whether L(M’) is
regular answers whether <M,w> is in
ATM. The hypothetical “REGULARTM”
subroutine applied to M’ tells us just
that. I.e., ATM ≤T REGULARTM

M’ on input x:
1. if x ∈{0n1n|n≥0}, accept x
2. otherwise, erase x
3. write w
4. run M on w
5. if M accepts w, then accept x
6. otherwise, reject x

 Σ*, if M accepts w
 {0n1n|n≥0}, otherwise

L(M’) =

From Lecture 07
Exercise: Is it ATM ≤m REGULARTM ? If not, could it be changed?

More on ≤T vs ≤m

Theorem: For any L, L ≤T L

The same is not true of ≤m:

Theorem: L recognizable and L ≤m L ⇒ L is decidable.
Proof: on input x, dovetail recognizers for x∈L & f(x)∈L

Corr: ATM ≤T ATM but not ATM ≤m ATM

Theorem: A ≤m B iff A ≤m B

Theorem: If L is not recognizable and both L ≤m B and L
≤m B, then neither B nor B are recognizable

EQTM is neither recognizable
nor co-recognizable

M0: on any input x, reject x. L(M0) = ∅
M1: on any input x, accept x. L(M1) = Σ*

For any <M,w>, let h(<M,w>) = M2 be the TM that,
on input x,

1. runs M on w
2. if M accepts w, then accept x.

Claim: L(M2) = Σ* (if <M,w> ∈ ATM), else = ∅ & h computable
Then ATM ≤m EQTM via g(<M,w>) = <M0,M2>
And ATM ≤m EQTM via f(<M,w>) = <M1,M2> (& ATM ≤m EQTM)

