Lecture |2

Why TM’s?
Programs are OK too
Fix 2 = printable ASCII

Programming language with ints, strings & function calls
“Computable function” = always returns something

“Decider” = computable function always returning 0 / |

“Acceptor” = accept if return |; reject if #| or loop

Aprog = {<Pw> | program P returns | on input w }

HALTprog = {<Pw> | prog P returns something on w }

AT™ (=71vs <m) HALT ™

f(<Mw>) = <M’ w>

S P%vv

!
Build M’

M’ =M, but
replace qreject
by a loop

rej acc
From Lecture 07

AProg — HAI—TProg

f(< P,w>) = <P’ w>

sub £(P,w){

// build P’ —|sub Pprime(x){
pn = ...//(find P’'s name)

pp = “sub ” + pn + “prime(x){”

pp += P

pp += “if “+pn+”(x) return 1;”

+= # 2 . r” ~
PP while True {;}} if P(x) return I;
Val — 11 < n + pp + 11 ’ {4 + W + 11 > {4

return val WhiIeTrue { ;}

)

Programs vs TMs

Everything we’ve done re TMs can be rephrased re programs

From the Church-Turing thesis (hopefully made concrete in earlier
HW) we know they are equivalent.

Above example shows some things are easier with programs.

Others get harder (e.g.,“Universal TM” is a Java interpreter written
in Java; “configurations” and “computation histories’ are much
messier)

TMs are convenient to use here since they strike a good balance

But | hope you can mentally translate between the two; decidability/
undecidability of various properties of programs are obviously
more directly relevant.

Mapping Reducibility

Defn: A is mapping reducible to B (A <m B) if there is
computable function f such that w e A & f(w) € B

A special case of <t
Call subr only once;its answer is the answer

Theorem:
A <n B &B decidable (recognizable)= A is too

A <m B & A undecidable (unrecognizable) = B is too
A<nB&B=<,C=2A=<,C

Most reductions we’ve seen were actually <, reductions.

Other Examples of <n,

At <m REGULARTM f(<M,w>) = <My>
Build M2 so L(M2) = 2"/ {0"I"},as M accept/rejects w

EMPTYtM <m EQTM f(<M>) = <M, Mreject™
L(Mreject) = 9, so equiv to M iff L(M) = &

Atm <m MPCP } ‘.

MPCP <., PCP

AT™M <m EMPTYTM f(<M,W>) = <M>

Build M| so L(M)) = {w} / &, as M accept/rejects w

EMPTYTMm is undecidable

EMPTYrm={<M>| MisaTMs.t.L(M) = @}

Pf: To show: Atm <1 EMPTY™™M

On input <M,w> build M’ :

Do not run M or M’. (That whole “halting
thing” means we might not learn much if we

did.) But note that L(M’) is/is not
empty exactly when M does not/does
accept w, so knowing whether L(M’) =
@ answers whether <M,w> is in A7m.
And our hypothetical “EMPTY1M”
subroutine applied to M’ tells us just
that. l.e,, AtM <17 EMPTY1M
NB: it shows Amv <m (EMPTY1m)C

From Lecture 07

M’ on input x:
|. erase x
2. write w
3.run M onw
4.if M accepts w, then accept x
5. otherwise, reject x

L = 2", if M accepts w
(M) = @, if M rejects w

REGULARTM is undecidable

REGULART™M = { <M>| MisaTMs.t. L(M) is regular }

Pf:To show: Atm <t REGULARTM M’ on input x:
l.if x e{0"I"|n=0}, accept x
On input <M,w> build M": 2. otherwise, erase x
Do not run M or M’. (That whole “halting 3. write w
thing” ...) But note that L(M’) is/is not 4.run Mon w

regular exactly when M does/does not | 5.if M accepts w, then accept x
accept w, so knowing whether L(M’) is | 6- otherwise, reject x

regular answers whether <M,w> is in

%k .
: : , : , if M accepts w
subroutine applied to M’ tells us just P

Atm. The hypothetical “REGULARTM” 5
L(M’) ={
that. l.e., AtMm <1 REGULARTM {

0"I"|n>0}, otherwise

Exercise: Is it Atm <m REGULARTM ! If not, could it be changed?
From Lecture 07

More on <TvVs <m

Theorem: For any L, L <tL
The same is not true of <m:

Theorem: L recognizable and L <, L = L is decidable.
Proof: on input x, dovetail recognizers for xelL & f(x)eL

Corr:Atm <7 Atm but not AtTm <m ATM

Theorem:A < B iff A <mB

Theorem: If L is not recognizable and both L <mBand L
<m B, then neither B nor B are recognizable

EQTm is neither recognizable
nor co-recognizable

Mo: on any input x, reject x. L(Mo) = @
Mi: on any input x, accept x.L(M|) = "
For any <M,w>, let h(<M,w>) = M; be the TM that,
on input X,
|.runs M onw
2. if M accepts w, then accept x.
Claim: L(My) = 2 (if <M,w> € A1m), else = @ & h computable
Then Atv <m EQTM via g(<M,w>) = <Mg,Mp>
And Atm <m EQmM via f(<Mw>) = <M|,M2> (& Arv <m EQrv)

