
Lecture 12



Why TM’s?  
Programs are OK too

Fix Σ = printable ASCII

Programming language with ints, strings & function calls

“Computable function” = always returns something

“Decider” = computable function always returning 0 / 1

“Acceptor” = accept if return 1; reject if ≠1 or loop

AProg = {<P,w> | program P returns 1 on input w }

HALTProg = {<P,w> | prog P returns something on w }
...



ATM (≤T vs ≤m) HALTTM

f(<M,w>) = <M’,w>

Halt?
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From Lecture 07

M’ = M, but 
replace qreject 
by a loop

Halt?

M,w

accrej

R:

S’:

Yes

<M’,w>   Build M’ 



sub f(P,w){
// build P’
pn = ...//(find P’s name)
pp = “sub ” + pn + “prime(x){”
pp += P
pp += “if “+pn+”(x) return 1;”
pp += “while True {;}}”
val = “<” + pp + “,” + w + “>”
return val

AProg ≤m HALTProg
f(<P,w>) = <P’,w>

sub Pprime(x){
sub P(y){
...
}
if P(x) return 1;
while True { ; }

}

(copy
of P)



Programs vs TMs

Everything we’ve done re TMs can be rephrased re programs 

From the Church-Turing thesis (hopefully made concrete in earlier 
HW) we know they are equivalent.

Above example shows some things are easier with programs.

Others get harder (e.g., “Universal TM” is a Java interpreter written 
in Java; “configurations” and “computation histories” are much 
messier)

TMs are convenient to use here since they strike a good balance

But I hope you can mentally translate between the two; decidability/
undecidability of various properties of programs are obviously 
more directly relevant.



Mapping Reducibility

Defn:  A is mapping reducible to B (A ≤m B) if there is 
computable function f such that w ∈ A ⇔ f(w) ∈ B

A special case of ≤T : 
Call subr only once; its answer is the answer 

Theorem:
A ≤m B & B     decidable    (recognizable) ⇒ A is too

A ≤m B & A undecidable (unrecognizable) ⇒ B is too

A ≤m B & B ≤m C ⇒ A ≤m C

Most reductions we’ve seen were actually ≤m reductions.



Other Examples of ≤m

ATM ≤m REGULARTM                              f(<M,w>) = <M2>
Build M2 so L(M2) = Σ* / { 0n1n }, as M accept/rejects w

EMPTYTM ≤m EQTM                      f(<M>) = <M, Mreject>
L(Mreject) = ∅, so equiv to M iff L(M) = ∅

ATM ≤m MPCP
MPCP ≤m PCP

ATM ≤m EMPTYTM                         f(<M,w>) = <M1>
Build M1 so L(M1) = {w} / ∅, as M accept/rejects w

5.2



Pf: To show:  ATM ≤T  EMPTYTM 

On input <M,w> build M’ :     
Do not run M or M’.  (That whole “halting 
thing” means we might not learn much if we 
did.)  But note that L(M’) is/is not 
empty exactly when M does not/does 
accept w, so knowing whether L(M’) = 
∅ answers whether <M,w> is in ATM.  
And our hypothetical “EMPTYTM” 
subroutine applied to M’ tells us just 
that.  I.e.,  ATM ≤T  EMPTYTM 

EMPTYTM is undecidable

M’ on input x:
  1. erase x
  2. write w  
  3. run M on w
  4. if M accepts w, then accept x
  5. otherwise, reject x

 Σ*, if M accepts w
 ∅,  if M rejects w

L(M’) = 

EMPTYTM = { <M> |  M is a TM s.t. L(M) = ∅ }

From Lecture 07
NB: it shows ATM ≤m  (EMPTYTM)C 



REGULARTM is undecidable

REGULARTM = { <M> |  M is a TM s.t. L(M) is regular }
Pf: To show:  ATM ≤T  REGULARTM 

On input <M,w> build M’ :     
Do not run M or M’.  (That whole “halting 

thing” ...)  But note that L(M’) is/is not 
regular exactly when M does/does not 
accept w, so knowing whether L(M’) is 
regular answers whether <M,w> is in 
ATM.  The hypothetical “REGULARTM” 
subroutine applied to M’ tells us just 
that.  I.e.,  ATM ≤T  REGULARTM 

M’ on input x:
1. if x ∈{0n1n|n≥0}, accept x
2. otherwise, erase x
3. write w
4. run M on w
5. if M accepts w, then accept x
6. otherwise, reject x

 Σ*, if M accepts w
 {0n1n|n≥0}, otherwise

L(M’) = 

From Lecture 07
Exercise: Is it ATM ≤m  REGULARTM ? If not, could it be changed?



More on ≤T vs ≤m

Theorem: For any L, L ≤T L

The same is not true of ≤m:

Theorem: L recognizable and L ≤m L ⇒ L is decidable.
Proof: on input x, dovetail recognizers for x∈L & f(x)∈L

Corr: ATM ≤T ATM but not ATM ≤m ATM

Theorem: A ≤m B iff  A ≤m B 

Theorem: If L is not recognizable and both L ≤m B and L 
≤m B, then neither B nor B are recognizable



EQTM is neither recognizable 
nor co-recognizable

M0: on any input x, reject x.  L(M0) = ∅
M1: on any input x, accept x. L(M1) = Σ*

For any <M,w>, let h(<M,w>) = M2 be the TM that, 
on input x, 

1. runs M on w
2. if M accepts w, then accept x.

Claim: L(M2) = Σ* (if <M,w> ∈ ATM), else = ∅ & h computable
Then  ATM  ≤m EQTM   via g(<M,w>) = <M0,M2> 
And   ATM   ≤m EQTM   via f(<M,w>) = <M1,M2> (& ATM ≤m EQTM)


