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Lecture 2

Algorithms

“An algorithm is a finite, precise set of instructions for 
performing a computation”

“The Division Algorithm”: ∀ a ∈ , d ∈ +, 
∃ unique q, r such that 0 ≤ r < d and a = qr+d
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By definition, no transitions out of qacc, qrej;

M halts if (and only if) it reaches either

M loops if it never halts (“loop” might suggest “simple”, but non-
halting computations may of course be arbitrarily complex)

M accepts if it reaches qacc, 

M rejects by halting in qrej or by looping

The language recognized by M:
L(M) = { w ∈ Σ* | M accepts w } 

L is Turing recognizable if ∃TM M s.t. L = L(M)

L is Turing decidable if, furthermore, M halts on all inputs

A key distinction!

All other 
transitions 
go to qreject



TM’s formally capture the intuitive notion of 
“algorithmically solvable”

Not provable, since “intuitive” is necessarily fuzzy.

But, give support for it by showing that 
    (a) other intuitively appealing (but formally defined) 
models are precisely equivalent (rest of lecture), and 
    (b) models that are provably different are unappealing, 
either because they are too weak (e.g., DFA’s) or too 
powerful (e.g., a computer with a “solve-the-halting-problem” 
instruction).

Church-Turing Thesis
Multi-tape Turing Machines
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Announcements

Late policy

eTurnin

Office hours M 2:30, W 12:30, Th 5:00

Midterm Fri 5/7, probably
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Key issue: avoid getting lost on ∞ path

Key Idea: breadth-first search

tree arity ≤ |Q| x | Γ| x |{L,R}|  (3 in example)

Simulating an NTM

q0

Rej

Rej

.

.

.

...

Accept

RejRej

Rej

RejRej

Rej

.

.

.

3211...

A TM “Enumerator”

L Turing recognizable iff 
a TM enumerates it

(    ):  Run enumerator, compare each “output”  to 
input; accept if they match (reject by not halting if input 
never appears) 

(    ):  The “obvious” idea: enumerate Σ*, run the 
recognizer on each, output those that are accepted.   

⇐

⇒

[Oops, doesn’t work... may not halt...]

L Turing recognizable iff 
a TM enumerates it

(    ):  A better idea–“dovetailing”: 

For i = 0, 1, 2, 3, ... :

At stage i, run the recognizer for i steps on each of 
the first i strings in Σ*, output any that are 
accepted.   

⇒



Encoding things

CFG G = (V, Σ, R, S) ;   <G> = ((S,A,B,...),(a,b,...), (S→aA, S→b, A→cAb, ...),S)
or        <G> = ((A0, A1, ...),(a0, a1, ...), (A0 → a0 A1, A0 → a1,  A1 → a2 A1 a1 , ...), A0)

DFA  D = (Q, Σ, δ, q0, F);             <D> = (...) 
TM   M = (Q, Σ, Γ, δ, q0, qa, qr);    <M> = (...)

...

Σ = ?

Decidability

Recall: L decidable means there is a TM recognizing L that 
always halts.

Example:

“The acceptance problem for DFAs”

ADFA = { <D,w> | D  is a DFA & w ∈ L(D) } 

Some Decidable Languages

The following are decidable:

ADFA = { <D,w> | D  is a DFA & w ∈ L(D) }

    pf: simulate D on w

ANFA = { <N,w> | N is an NFA & w ∈ L(N) }

    pf: convert N to a DFA, then use previous as a subroutine

AREX = { <R,w> | R is a regular expr & w ∈ L(R) }

    pf: convert R to an NFA, then use previous as a subroutine 

EMPTYDFA = {<D> | D is a DFA and L(D) = ∅ }

    pf: is there no path from start state to any final state?

EQDFA = { <A,B> | A & B are DFAs s.t. L(A)= L(B) }

pf: equal iff L(A)⊕L(B) = ∅, and x⊕y = (x∩yc)∪(xc∩y), and  
regular sets are closed under ∪, ∩, complement

ACFG = { <G,w> | ... }

     pf: see book

EMPTYCFG = { <G> | ... }

    pf: see book



EQCFG = { <A,B> | A & B are CFGs s.t. L(A) = L(B) }

This is NOT decidable

Lecture 5

The Acceptance Problem for TMs

ATM = { <M,w> | M  is a TM & w ∈ L(M) }

Theorem:  ATM is Turing recognizable

Pf: It is recognized by a TM U that, on input <M,w>, simulates 
M on w step by step.  U accepts iff M does.   �

U is called a Universal Turing Machine
(Ancestor of the stored-program computer)

Note that U is a recognizer, not a decider.



Programming ENIAC, circa 1947
http://en.wikipedia.org/wiki/ENIAC

Cardinality

Two sets have equal cardinality if there is a bijection 
between them

A set is countable if it is finite or has the same cardinality 
as the natural numbers

Examples: 

$* is countable (think of strings as base-|$| numerals)

Even natural numbers are countable:  f(n) = 2n

The Rationals are countable

More cardinality facts

If f: A → B in an injective function (“1-1”, but not 
necessarily “onto”), then 

     |A| ≤ |B|

(Intuitive: f is a bijection from A to its range, which is a 
subset of B, & B can’t be smaller than a subset of itself.)

Theorem (Cantor-Schroeder-Bernstein):

If |A| ≤ |B| and |B| ≤ |A| then |A| = |B|



The Reals are Uncountable

Suppose they were

List them in order

Define X so that its ith 
digit ≠ ith digit of ith real

Then X is not in the list

Contradiction

A detail: avoid .000...,  .9999... in X

int 1 2 3 3 5
1
2
3
4
5
6

0. 0 0 0 0 0
3. 1 4 1 5 9
0. 3 3 3 3 3
0. 5 0 0 0 0
2. 7 1 8 2 8
41. 9 9 9 9 9

X 1. 2 4 1 3 8 ...

...

...

...

Number of Languages in Σ* 
is Uncountable

Suppose they were

List them in order

Define L so that  
wi ∈ L ⇔ wi ∉Li

Then L is not in the list

Contradiction

w1

1
w2 w3 w4 w5 w6

L1

L2

L3

L4

L5

L6

0 0 0 0 0 0
1 1 1 1 1 1
0 1 0 1 0 1
0 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 0 1

L 1 0 1 1 1 0 ...

...

...

...

“Most” languages are neither Turing 
recognizable nor Turing decidable

Pf:  

    “< >” maps TMs into Σ*, a countable set, so the set 
of TMs, and hence of Turing recognizable languages is 
also countable; Turing decidable is a subset of Turing 
recognizable, so also countable.  But by the previous 
result, the set of all languages is uncountable.

A specific non-Turing-
recognizable language

Let Mi be the TM 
encoded by wi, i.e. 
<Mi> = wi

(Mi = some default machine, if 
wi is an illegal code.)

i, j entry tells whether 
Mi accepts wj

Then LD is not recognized 
by any TM

w1

1
w2 w3 w4 w5 w6

<M1>
><M2>

<M3>
<M4>
<M5>
<M6>

0 0 0 0 0 0
1 1 1 1 1 1
0 1 0 1 0 1
0 1 0 0 0 0
1 1 1 0 0 0
0 1 0 0 0 1

LD 1 0 1 1 1 0 ...

...

...

...



Theorem:  The class of Turing recognizable languages is 
not closed under complementation.

Proof:

The complement of D, is Turing recognizable:

On input wi, run <Mi> on wi (= <Mi>); accept if it 
does.  E.g. use a universal TM on input <Mi,<Mi>>

E.g., in previous example, Dc might be L(M6)

Theorem:  The class of Turing decidable languages is 
closed under complementation.

Proof:

Flip qaccept, qreject

Decidable     Recognizable

recognizable

decidable

co-
recognizable

⊂ ≠
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The Acceptance Problem for TMs

ATM = { <M,w> | M  is a TM & w ∈ L(M) }

Theorem:  ATM is Turing recognizable

Pf: It is recognized by a TM U that, on input <M,w>, simulates 
M on w step by step.  U accepts iff M does.   �

U is called a Universal Turing Machine
(Ancestor of the stored-program computer)

Note that U is a recognizer, not a decider.

ATM is Undecidable

ATM = { <M,w> | M  is a TM & w ∈ L(M) }

Suppose it’s decidable, say by TM H.  Build a new TM D:

“on input <M> (a TM), run H on <M,<M>>; when it 
halts, halt & do the opposite, i.e. accept if H rejects 
and vice versa”

D accepts <M> iff H rejects <M,<M>>    (by construction)
                        iff M rejects <M>           (H recognizes ATM)

D accepts <D> iff D rejects <D>            (special case)

Contradiction!

Let Mi be the TM 
encoded by wi, i.e. 
<Mi> = wi

(Mi = some default machine, if 
wi is an illegal code.)

i, j entry tells whether 
Mi accepts wj

Then LD is not recognized 
by any TM

A specific non-Turing-
recognizable language

w1

1
w2 w3 w4 w5 w6

<M1>
><M2>

<M3>
<M4>
<M5>
<M6>

0 0 0 0 0 0
1 1 1 1 1 1
0 1 0 1 0 1
0 1 0 0 0 0
1 1 1 0 0 0
0 1 0 0 0 1

LD 1 0 1 1 1 0 ...

...

...

...

Note: 
 The a

bove T
M D, if 

it e
xiste

d, would re
cognize 

exact
ly t

he la
nguage

 LD 

defined in this 

diago
naliz

atio
n proof 

(which
 we a

lrea
dy k

now is 

not re
cognizab

le)

Decidable     Recognizable

recognizable

decidable

co-
recognizable

⊂ ≠

LD
LD



Decidable = Rec ∩ co-Rec

recognizable

decidable

co-
recognizable

L decidable iff both L 
& Lc are recognizable
Pf: 
(%) on any given input, dovetail 
a recognizer for L with one for 
Lc; one or the other must halt 
& accept, so you can halt & 
accept/reject appropriately.

(&): from last lecture, 
decidable languages are closed 
under complement (flip acc/rej)

Reduction

“A is reducible to B” means I could solve A if I had a 
subroutine for B

Ex:

Finding the max element in a list is reducible to sorting

pf: sort the list in increasing order, take the last element

(A big hammer for a small problem, but never mind...)

The Halting Problem

HALTTM = { <M,w> | TM M halts on input w }

Theorem: The halting problem is undecidable

Proof:

A = ATM, B = HALTTM  Suppose I can reduce A to B.  We 
already know A is undecidable, so must be that B is, too.

Suppose TM R decides HALTTM.  Consider S: 

On input <M,w>, run R on it.  If it rejects, halt & reject; if it 
accepts, run M on w; accept/reject as it does.

Then S decides ATM, which is impossible.  R can’t exist.

Lecture 7



Reduction

“A is reducible to B” means I could solve A if I had a 
subroutine for B

Ex:

Finding the max element in a list is reducible to sorting

pf: sort the list in increasing order, take the last element

(A big hammer for a small problem, but never mind...)

The Halting Problem

HALTTM = { <M,w> | TM M halts on input w }

Theorem:  The halting problem is undecidable

Proof:

A = ATM, B = HALTTM  Suppose I can reduce A to B.  We 
already know A is undecidable, so must be that B is, too.

Suppose TM R decides HALTTM.  Consider S: 

On input <M,w>, run R on it.  If it rejects, halt & reject; if it 
accepts, run M on w; accept/reject as it does.

Then S decides ATM, which is impossible.  R can’t exist.

Halt?

M,w

Simulate M on w

acc

accrej

rej

R:S:
Yes

Another Way

Rather than running R on <M,w>, and manipulating that 
answer, manipulate the input to build a new M’ so that 
R’s answer about <M’,w> directly answers the question 
of interest.

Specifically, build M’ as a clone of M, but modified so 
that if M halts-and-rejects, M’ instead rejects by looping.

Then halt/not-halt for M’ == accept/reject for M

Again, this reduces ATM to HALTTM



Halt?

M,w

accrej

R:

S’:

Yes

Build M’
Pass <M’,w> to R

M’: same as 
M, but qreject 
replaced by a 
loop

Reduction

Notation (not in book, but common): 

A ≤T B means “A is Turing Reducible to B”

I.e., if I had a TM deciding B, I could use it as a 
subroutine to solve A

Facts:

A ≤T B & B decidable implies A decidable         (definition)

A ≤T B & A undecidable implies B undecidable (contrapositive)

A ≤T B & B ≤T C implies A ≤T C

Pf: To show:  ATM ≤T  EMPTYTM 

On input <M,w> build M’ :     
Do not run M or M’.  (That whole “halting 
thing” means we might not learn much if we 
did.)  But note that L(M’) is/is not 
empty exactly when M does not/does 
accept w, so knowing whether L(M’) = 
∅ answers whether <M,w> is in ATM.  
And our hypothetical “EMPTYTM” 
subroutine applied to M’ tells us just 
that.  I.e.,  ATM ≤T  EMPTYTM 

EMPTYTM is undecidable

M’ on input x:
  1. erase x
  2. write w  
  3. run M on w
  4. if M accepts w, then accept x
  5. otherwise, reject x

 Σ*, if M accepts w
 ∅,  if M rejects w

L(M’) = 

EMPTYTM = { <M> |  M is a TM s.t. L(M) = ∅ }

REGULARTM is undecidable

REGULARTM = { <M> |  M is a TM s.t. L(M) is regular }
Pf: To show:  ATM ≤T  REGULARTM 

On input <M,w> build M’ :     
Do not run M or M’.  (That whole “halting 

thing” ...)  But note that L(M’) is/is not 
regular exactly when M does/does not 
accept w, so knowing whether L(M’) is 
regular answers whether <M,w> is in 
ATM.  The hypothetical “REGULARTM” 
subroutine applied to M’ tells us just 
that.  I.e.,  ATM ≤T  EMPTYTM 

M’ on input x:
1. if x ∈{0n1n|n≥0}, accept x
2. otherwise, erase x
3. write w
4. run M on w
5. if M accepts w, then accept x
6. otherwise, reject x

 Σ*, if M accepts w
 {0n1n|n≥0}, otherwise

L(M’) = 
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Announcements

re HW#1,  Aeron says “If I made a comment, even if I 
didn't take off points this time, people should pay 
attention because I will take off points for the same 
mistake in the future...”

EQTM is undecidable

EQTM = { <M1, M2> |  Mi are TMs s.t. L(M1) = L(M2)}

EQTM is undecidable

EQTM = { <M1, M2> |  Mi are TMs s.t. L(M1) = L(M2)}

Pf:  Will show EMPTYTM ≤T EQTM 

Suppose EQTM were decidable.  Let M∅ be a TM that 
accepts nothing, say one whose start state = qreject. 
Consider the TM E that, given <M>, builds <M, M∅>, 
then calls the hypothetical subroutine for EQTM on it, 
accepting/rejecting as it does. Now, <M, M∅> ∈ EQTM if 
and only if M accepts ∅, so, E decides whether M ∈ 
EMPTYTM, which we know to be impossible.  Contradiction 



Linear Bounded Automata

Like a (1-tape) TM, but tape only long enough for input

(head stays put if try to move off either end of tape)

M = (Q, Σ, Γ, δ, q0, qacc, qrej)

L(M) = { x ∈ Σ* | M accepts x }

Finite state 
control

0 1 0 1 1 1 ... 0

read/write head

An Aside: The Chomsky Hierarchy

TM  = phrase structure grammars    αAβ→αγβ
LBA = context-sensitive grammars   αAβ→αγβ,  γ≠ε
PDA = context-free grammars          A→γ
DFA = regular grammars                  A→abcB

csl
recog

cfl
reg

ALBA is decidable

ALBA = { <M, w> | M is an LBA and w ∈ L(M) }

Key fact: the number of distinct configurations of an 
LBA on any input of length n is bounded, namely 

≤ n |Q| |Γ|n
If M runs for more than that many steps, it is looping

Decision procedure for ALBA: 

Simulate M on w and count steps; if it halts and 
accepts/rejects, do the same; if it exceeds that time 
bound, halt and reject (it’s looping).

EMPTYLBA is undecidable

Why is this hard, when the acceptance problem is not?

Loosely, it’s about infinitely many inputs, not just one

Can we exploit that, say to decide ATM?

An idea.  An LBA is a TM, so can it simulate M on w?

Only if M doesn’t use too much tape.

What about simulating M on w # # # # # # # # # # # # ?



Given M, build LBA M’ that, on input w # # # # ... #, 
simulates M on w, treating # as a blank.  If M halts, do 
the same.  If M tries to move off the right end of the 
tape, reject.

L(M’) = { w#k | M accepts w using ≤ | w#k | tape cells }

Key point: 

if M rejects w, M’ rejects w#k for all k,         ∴ L(M’) = ∅

if M accepts w, some k will be big enough, ∴ L(M’) ≠∅
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EMPTYLBA is undecidable

An alternate proof, using a new technique – 

Computation histories

Computation Histories

q

0 1 0 1 1 ...

head

Configuration:  
state, head, tape 

Encoding Configs:    
0 1 q 0 1 1  
A string in Γ* Q Γ* (trailing blanks optional)

Accepting (Rejecting) History:  C1, C2, ..., Cn s.t. 
1. C1 is M’s initial configuration
2. Cn is an accepting (rejecting, resp.) config, and
3. For each 1 ≤ i < n, Ci moves to Ci+1 in one step



Checking Histories

Many proofs require checking that a string, say 
# C1 # C2 # ... # Cn #  in ({#} ∪ Q ∪ Γ)* 

is/is not an accepting history:
1. C1 is M’s initial configuration:

C1 ∈ q0 Σ*

2. Cn is an accepting config:
it contains qaccept

3. For each 1 ≤ i < n, Ci moves to Ci+1 in one step
...

#a1a2...akpak+1ak+2...an#b1b2...bjqbj+1bj+2...bm#

“Ci moves to Ci+1 in one step of M”

Except for adjustments, all near 
the head, reflecting the move:
    δ(p, ak+1) = (q, bk+1, L/R), 
     j = k+1 if R else max(k-1,0) 
and injecting blanks on the right 
as needed: 
    if n = k, then “ak+1” = blank
    m = n+1, ...

No change: 

ai = bi ∈ Γ
p, q ∈ Q, 

j = k ± 1

n = m 

Aside: one reason TM’s have been so useful for computation theory is that they make 
questions like this very simple; “config” and “move” are much messier for “real” computers.

 ATM ≤T EMPTYLBA

Given ⟨M, w⟩, build an LBA LM,w that recognizes

AHM,w = { x | x = # C1 # C2 # ... # Cn #,  an Accepting 
computation History of M on w }

Then pass ⟨LM,w⟩ to the hypothetical subr for EMPTYLBA

Specifically, LM,w operates by checking that:
1. Its input is of the form # C1 # C2 # ... # Cn #
2. C1 is the initial config of M on w
3. Cn has M’s accept state, and
4. For each 1 ≤ i < n, Ci moves to Ci+1 in one step of M

(ziz-zag across adjacent pairs, checking as on prev slide)

Correctness

L(LM,w) = AHM,w = { x | x = # C1 # C2 # ... # Cn #,  an 
accepting computation history of M on w }

       Empty if M rejects w  – no such x 
Non-empty if M accepts w – there is one such history

So, “M accepts w” is equivalent to (non-)emptyness of AHM,w

∴ ATM ≤T EMPTYLBA                                             QED



Notes

Similar ideas can be used to give reductions like

ATM ≤T EMPTYX 

for any machine or language class X expressive enough that 
we can easily, given M & w, represent AHM,w in X

A nice thing about histories is that they are so transparent 
that this is easy, even for more restricted models than LBA’s

(One example in homework; another below)

ALLCFL is Undecidable

ALLCFG = { <G> | G is a CFG with L(G) = Σ* }

A variant on the above proof, but instead of using  
AHM,w, (the set of accepting histories of M on w), we 
use its complement:

 NHM,w = { x | x is not an accepting computation 
history* of M on w }

* and change the representation of a history so that alternate 
configs are reversed:

# C1 # C2R # C3 # C4R #... # Cn(R?) #

ATM ≤T ALLCFG 

Given M, w, build a PDA P that, on input x, accepts if x does 
not start and end with #; otherwise, let 

x = # C1 # C2R # C3 # C4R #... # Cn(R?) #

and nondeterministically do one of:
1. accept if C1 is not M’s initial config on w
2. accept if Cn is not accepting, or
3. nondeterministically pick i and verify that Ci does not 
yield Ci+1 in one step.  (Push 1st; pop & compare to 2nd, with the 
necessary changes near the head.)

From P, build equiv CFG G; ask the hypothetical ALLCFG subr 
if G generates all of ({#} ∪ Q ∪ Γ)*

Computable Functions

In addition to language recognition, we are also 
interested in computable functions.

Defn: a function f: Σ* → Σ* is computable if ∃ a TM M s.t. 
given any input w ∈ Σ*, M halts with just f(w) on its tape.  
(Note: domain(f) = Σ*; crucial that M always halt, else value undefined.)

Ex 1: f(n) = n2 is computable

Ex 2: g(⟨M,w⟩) = ⟨LM,w⟩ (as in the EMPTYLBA pf) is computable

Ex 2: h(⟨M,w⟩) = “1 if M acc w else 0” is uncomputable  
(Why?  Reduce ATM to it.)



Reducibility

“A reducible to B” means could solve A if had subr for B

Can use B in arbitrary ways–call it repeatedly, use its 
answers to form new calls, etc.  E.g., 

WHACKY ≤T ATM

where WHACKY = { <M,w1, w2, ...,wn> | M accepts 

a1�an, where ai = 0 if M rejects wi, 1 if accepts wi }

BUT in “practice,” reductions rarely exploit this generality 
and a more refined version is better for some purposes

Reduction

Notation (not in book, but common): 

A ≤T B means “A is Turing Reducible to B”

I.e., if I had a TM deciding B, I could use it as a 
subroutine to solve A

Facts:

A ≤T B & B decidable implies A decidable         (definition)

A ≤T B & A undecidable implies B undecidable (contrapositive)

A ≤T B & B ≤T C implies A ≤T C

Mapping Reducibility

Defn:  A is mapping reducible to B (A ≤m B) if there is 
computable function f such that w ∈ A ⇔ f(w) ∈ B 

A special case of ≤T : 
Call subr only once; its answer is the answer

Facts:
A ≤m B & B     decidable                         ⇒ A is too

A ≤m B & A undecidable                          ⇒ B is too

A ≤m B & B ≤m C ⇒ A ≤m C

Mapping Reducibility

Defn:  A is mapping reducible to B (A ≤m B) if there is 
computable function f such that w ∈ A ⇔ f(w) ∈ B

A special case of ≤T : 
Call subr only once; its answer is the answer 

Theorem:
A ≤m B & B     decidable    (recognizable) ⇒ A is too

A ≤m B & A undecidable (unrecognizable) ⇒ B is too

A ≤m B & B ≤m C ⇒ A ≤m C

Most reductions we’ve seen were actually ≤m reductions.
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Mapping Reducibility

Defn:  A is mapping reducible to B (A ≤m B) if there is 
computable function f such that w ∈ A ⇔ f(w) ∈ B 

A special case of ≤T : 
Call subr only once; its answer is the answer

Facts:
A ≤m B & B     decidable                         ⇒ A is too

A ≤m B & A undecidable                          ⇒ B is too

A ≤m B & B ≤m C ⇒ A ≤m C

Mapping Reducibility

Defn:  A is mapping reducible to B (A ≤m B) if there is 
computable function f such that w ∈ A ⇔ f(w) ∈ B

A special case of ≤T : 
Call subr only once; its answer is the answer 

Theorem:
A ≤m B & B     decidable    (recognizable) ⇒ A is too

A ≤m B & A undecidable (unrecognizable) ⇒ B is too

A ≤m B & B ≤m C ⇒ A ≤m C

Most reductions we’ve seen were actually ≤m reductions.

f(w4)
w4

Mapping Reducibility

Σ* Σ*

A B
A B

w ∈ A ⇔ f(w) ∈ B 

w1

f(w1) = f(w5)
w5

f(w2)

f(w3)
w3

w2

f: Σ* → Σ*



Mapping Reducibility

Defn:  A is mapping reducible to B (A ≤m B) if there is 
computable function f such that w ∈ A ⇔ f(w) ∈ B

Theorem:
1) A ≤m B & B     decidable    (recognizable) ⇒ A is too

2) A ≤m B & A undecidable (unrecognizable) ⇒ B is too

3) A ≤m B & B ≤m C ⇒ A ≤m C

Proof: 
1) To decide (recognize) w in A compute f(w), then use

decider (recognizer, resp) for B on f(w).
2) Contrapositive
3) Given f for A → B, g for B → C; then w ∈ A ⇔ g(f(w)) ∈ C

ATM (≤T vs ≤m) HALTTM

f(<M,w>) = <M’,w>

Halt?

M,w

Sim M on w

acc

accrej

rej

R:

S:

Yes

From Lecture 07

M’ = M, but 
replace qreject 
by a loop

Halt?

M,w

accrej

R:

S’:

Yes

<M’,w>   Build M’ 

Other Examples of ≤m

ATM ≤m REGULARTM                              f(<M,w>) = <M2>
Build M2 so L(M2) = Σ* / { 0n1n }, as M accept/rejects w

EMPTYTM ≤m EQTM                      f(<M>) = <M, Mreject>
L(Mreject) = ∅, so equiv to M iff L(M) = ∅

ATM ≤m MPCP
MPCP ≤m PCP

ATM ≤m EMPTYTM                         f(<M,w>) = <M1>
Build M1 so L(M1) = {w} / ∅, as M accept/rejects w

5.2

Lecture 12



Why TM’s?  
Programs are OK too

Fix Σ = printable ASCII

Programming language with ints, strings & function calls

“Computable function” = always returns something

“Decider” = computable function always returning 0 / 1

“Acceptor” = accept if return 1; reject if ≠1 or loop

AProg = {<P,w> | program P returns 1 on input w }

HALTProg = {<P,w> | prog P returns something on w }
...

ATM (≤T vs ≤m) HALTTM

f(<M,w>) = <M’,w>

Halt?

M,w

Sim M on w

acc

accrej

rej

R:

S:

Yes

From Lecture 07

M’ = M, but 
replace qreject 
by a loop

Halt?

M,w

accrej

R:

S’:

Yes

<M’,w>   Build M’ 

sub f(P,w){
// build P’
pn = ...//(find P’s name)
pp = “sub ” + pn + “prime(x){”
pp += P
pp += “if “+pn+”(x) return 1;”
pp += “while True {;}}”
val = “<” + pp + “,” + w + “>”
return val

AProg ≤m HALTProg
f(<P,w>) = <P’,w>

sub Pprime(x){
sub P(y){
...
}
if P(x) return 1;
while True { ; }

}

(copy
of P)

Programs vs TMs

Everything we’ve done re TMs can be rephrased re programs 

From the Church-Turing thesis (hopefully made concrete in earlier 
HW) we know they are equivalent.

Above ex. shows some things are perhaps easier with programs.

Others get harder (e.g., “Universal TM” is a Java interpreter written 
in Java; “configurations” and “computation histories” are much 
messier)

TMs are convenient to use here since they strike a good balance

Hopefully you can mentally translate between the two; decidability/
undecidability of various properties of programs are obviously 
more directly relevant.



Mapping Reducibility

Defn:  A is mapping reducible to B (A ≤m B) if there is 
computable function f such that w ∈ A ⇔ f(w) ∈ B

A special case of ≤T : 
Call subr only once; its answer is the answer 

Theorem:
A ≤m B & B     decidable    (recognizable) ⇒ A is too

A ≤m B & A undecidable (unrecognizable) ⇒ B is too

A ≤m B & B ≤m C ⇒ A ≤m C

Most reductions we’ve seen were actually ≤m reductions.

Other Examples of ≤m

ATM ≤m REGULARTM                              f(<M,w>) = <M2>
Build M2 so L(M2) = Σ* / { 0n1n }, as M accept/rejects w

EMPTYTM ≤m EQTM                      f(<M>) = <M, Mreject>
L(Mreject) = ∅, so equiv to M iff L(M) = ∅

ATM ≤m MPCP
MPCP ≤m PCP

ATM ≤m EMPTYTM                         f(<M,w>) = <M1>
Build M1 so L(M1) = {w} / ∅, as M accept/rejects w

5.2

Pf: To show:  ATM ≤T  EMPTYTM 

On input <M,w> build M’ :     
Do not run M or M’.  (That whole “halting 
thing” means we might not learn much if we 
did.)  But note that L(M’) is/is not 
empty exactly when M does not/does 
accept w, so knowing whether L(M’) = 
∅ answers whether <M,w> is in ATM.  
And our hypothetical “EMPTYTM” 
subroutine applied to M’ tells us just 
that.  I.e.,  ATM ≤T  EMPTYTM 

EMPTYTM is undecidable

M’ on input x:
  1. erase x
  2. write w  
  3. run M on w
  4. if M accepts w, then accept x
  5. otherwise, reject x

 Σ*, if M accepts w
 ∅,  if M rejects w

L(M’) = 

EMPTYTM = { <M> |  M is a TM s.t. L(M) = ∅ }

NB: it shows ATM ≤m  (EMPTYTM) 

From Lecture 07

REGULARTM is undecidable

REGULARTM = { <M> |  M is a TM s.t. L(M) is regular }
Pf: To show:  ATM ≤T  REGULARTM 

On input <M,w> build M’ :     
Do not run M or M’.  (That whole “halting 

thing” ...)  But note that L(M’) is/is not 
regular exactly when M does/does not 
accept w, so knowing whether L(M’) is 
regular answers whether <M,w> is in 
ATM.  The hypothetical “REGULARTM” 
subroutine applied to M’ tells us just 
that.  I.e.,  ATM ≤T  REGULARTM 

M’ on input x:
1. if x ∈{0n1n|n≥0}, accept x
2. otherwise, erase x
3. write w
4. run M on w
5. if M accepts w, then accept x
6. otherwise, reject x

 Σ*, if M accepts w
 {0n1n|n≥0}, otherwise

L(M’) = 

Exercise: Is it ATM ≤m  REGULARTM ? If not, could it be changed?

From Lecture 07



More on ≤T vs ≤m

Theorem: For any L, L ≤T L

The same is not true of ≤m:

Theorem: L recognizable and L ≤m L ⇒ L is decidable.
Proof: on input x, dovetail recognizers for x∈L & f(x)∈L

Corr: ATM ≤T ATM but not ATM ≤m ATM

Theorem: A ≤m B iff  A ≤m B 

Theorem: If L is not recognizable and both L ≤m B and L 
≤m B, then neither B nor B are recognizable

(x ∈ L  ⇔  f(x) ∈ L, so x ∉ L  ⇔  f(x) ∉ L ⇔ f(x) ∈ L)

EQTM is neither recognizable 
nor co-recognizable

M0: on any input x, reject x.  L(M0) = ∅
M1: on any input x, accept x. L(M1) = Σ*

For any <M,w>, let h(<M,w>) = M2 be the TM that, 
on input x, 

1. runs M on w
2. if M accepts w, then accept x.

Claim: L(M2) = Σ* (if <M,w> ∈ ATM), else = ∅ & h computable
Then  ATM  ≤m EQTM   via g(<M,w>) = <M0,M2> 
And   ATM   ≤m EQTM   via f(<M,w>) = <M1,M2> (& ATM ≤m EQTM)

Lecture 13

EQTM is neither recognizable 
nor co-recognizable

M0: on any input x, reject x.  L(M0) = ∅
M1: on any input x, accept x. L(M1) = Σ*

For any <M,w>, let h(<M,w>) = M2 be the TM that, 
on input x, 

1. runs M on w
2. if M accepts w, then accept x.

Claim: L(M2) = Σ* (if <M,w> ∈ ATM), else = ∅ & h computable
Then  ATM  ≤m EQTM   via g(<M,w>) = <M0,M2> 
And   ATM   ≤m EQTM   via f(<M,w>) = <M1,M2> (& ATM ≤m EQTM)



Defining Inequivalence

“If two TMs are not equivalent, there is some input w 
where they differ, and if they differ there is some time t 
such that one accepts within t steps, but the other will 
not accept no matter how long you run it.”

EQTM = { x |  ∃ y ∀z ⟨x,y,z⟩ ∈ D } where the decidable 
set D = { triples ⟨x,y,z⟩ such that x is a pair of TMs, y is a 
pair w,t, and one machine accepts w within t steps but 
the other has not accepted w within z steps } 

Σ2 :  { x | ∃y∀z ⟨x,y,z⟩∈D }
ALLTM, EQTM, ...

⋮

Δ0:
decidable

The “Arithmetical Hierarchy”

Δ1:
decidable
given ATM

Σ1 (Turing recognizable): 
{ x | ∃y ⟨x,y⟩∈D }

ATM, EMPTYTM, ...

'1 (co-recognizable): 
{ x | ∀y ⟨x,y⟩∈D } 

ATM, EMPTYTM, ...

'2 :  { x | ∀y∃z ⟨x,y,z⟩∈D }
ALLTM, EQTM, ...

Potential Utility: It is often easy to give such a quantifier-based 
characterization of a language; doing so suggests (but doesn’t prove) whether 

it is decidable, recognizable, etc. and suggests candidates for reducing to it.

“The human mind seems limited in its ability to 
understand and visualize beyond four or five 
alternations of quantifier.  Indeed, it can be argued that 
the inventions, subtheories, and central lemmas of 
various parts of mathematics are devices for assisting 
the mind in dealing with one or two additional 
alternations of quantifier.”

H. Rogers, The Theory of Recursive Functions and Effective Computability, McGraw-Hill, 
1967, pp 322-323.

Decidability Questions

Questions about a single TM:

Detail questions: about operation or structure of a TM

useless state, does head move left, does it take >100 steps, ...

Bottom-line questions: ask about a TM’s language

Is L(M) empty?  Infinite?  Is 42 in L(M)? ...

About L(M), not M, per se.  Same answer for M’ if L(M)=L(M’)

Other: Questions about ⟨M,w⟩, 2 TMs, grammars, ...

Bottom-line questions: ask about a TM’s language

Is L(M) empty?  Infinite?  Is 42 in L(M)? ...

About L(M), not M, per se.  Same answer for M’ if L(M)=L(M’)



Language Properties

We formalize language properties simply as sets of 
languages 

E.g., the “infiniteness” property is just the set of infinite 
languages.

A property is non-trivial if there is at least one language with the 
property and one without.

E.g., “emptiness” is nontrivial: L1=∅ has it; L2={42} doesn’t.

E.g., “countable” is trivial: every subset of Σ* is countable

Rice’s Theorem

Theorem:

For every nontrivial property Ƥ of the Turing 
recognizable languages, it is undecidable whether a TM 
recognizes a language having property Ƥ.  I.e.,

ƤTM = { ⟨M⟩ | L(M) ∈ Ƥ }

is undecidable.

Corr:

EMPTYTM, INFINITETM, REGULARTM, ... all undecidable

Rice’s Theorem

M’ on input x:
  1. save x
  2. write w  
  3. run M on w
  4. if M accepts w, then run M1 on x

L(M’) =   

ƤTM = { <M> |  M is a TM s.t. L(M) ∈ Ƥ }

? 

Rice’s Theorem

M’ on input x:
  1. save x
  2. write w  
  3. run M on w
  4. if M accepts w, then run M1 on x

 L(M1), if M accepts w
 ∅,      if M rejects w

L(M’) = 

ƤTM = { <M> |  M is a TM s.t. L(M) ∈ Ƥ }



NB: it shows ATM ≤m ƤTM or ƤTM

Pf:  To show:  ATM ≤T  ƤTM .  WLOG, 

∅∉Ƥ; M1 is a TM s.t. L(M1) ∈ Ƥ 
On input <M,w> build M’ :     
Do not run M or M’.  (That whole “halting 
thing” means we might not learn much if we 

did.)  But note that L(M’) is/is not in Ƥ 
exactly when M does/does not accept 
w, so knowing whether L(M’) ∈ Ƥ 
answers whether <M,w> is in ATM.    
I.e.,  ATM ≤T  EMPTYTM 

Rice’s Theorem

M’ on input x:
  1. save x
  2. write w  
  3. run M on w
  4. if M accepts w, then run M1 on x

 L(M1), if M accepts w
 ∅,      if M rejects w

L(M’) = 

ƤTM = { <M> |  M is a TM s.t. L(M) ∈ Ƥ } Programs, in general, are opaque, inscrutable, 
confusing, complex, obscure, and generally 
yucky...

(If you’ve been a 142 TA, you might have observed this yourself...)

Decidability Questions

Questions about a single TM:

Detail questions: about operation or structure of a TM

useless state, does head move left, does it take >100 steps, ...

Bottom-line questions: ask about a TM’s language

Is L(M) empty?  Infinite?  Is 42 in L(M)? ...

About L(M), not M, per se.  Same answer for M’ if L(M)=L(M’)

Other: Questions about ⟨M,w⟩, 2 TMs, grammars, ...

Bottom-line questions: ask about a TM’s language

Is L(M) empty?  Infinite?  Is 42 in L(M)? ...

About L(M), not M, per se.  Same answer for M’ if L(M)=L(M’)

Rice’s theorem doesn’t 
(directly) answer these

But it says all these are 
undecidable (or trivial)


