W. L. Ruzzo

CSE 431

Introduction to Theory of Computation
Homework #7
Due: Friday, May 28, 2010

15 May 2010

Homework Assignment:

1. 7.20
2.7.23
3. 7.24
4. 7.25
5. 7.41

. (For comparison, 7.40 shows that minimization of DFAs is doable in polynomial time.)

6. Well folks, here’s the event you’ve all been waiting for: 4, count ’em four, proofs that P = NP.

Only you can stop Ruzzo from becoming world-famous! Find and explain the flaw in each of
the “proof™ sketches below. Try to be explicit about which hypotheses of critical theorems are
being violated or misused. Give simple, concrete counterexamples where possible.
Let SUBSET-SUM, also know as KNAP, be the set {a1#ao# . .. #a,#C' | a; and C are integers
coded in binary, and there is a set I C {1,...,n} such that }_;c; a; = C'}. Let UKNAP be
the same, except that the integers are coded in unary, i.e., a is represented by the string 1¢. It is
known that UKNAP is in P, but KNAP is NP-complete.

(a)

(b)

(©)

For any string u in {1, #}* we can easily produce a string v in {0, 1, #}* such that u €
UKNAP < v € KNAP. (E.g., if u = 11#14#11111 then v = 10#1#101.) Further,
the transformation can be done in time bounded by a polynomial in the length of u. Thus,
P=NP.

For any string v in {0, 1, #}* we can easily produce a string w in {1, #}* such that v €
KNAP < u € UKNAP. Further, the transformation can be done in time bounded by a
polynomial in the length of u. Thus, P = N P.

1-o0f-3-SAT is the set of 3-CNF Boolean formulas that are satisfiable by truth assignments
making exactly one of the three literals in each clause true. Like 3-SAT, this problem is
known to be NP-complete.

Let f be a formula in conjunctive normal form with exactly 3 literals per clause (3CNF).

uppose it has variables x1, ..., x,,, and clauses c1, . . ., ¢,. Suppose “x;” occurs in clauses
S th bl e dcl yeerCqge S “x;” 1
numbered i1, ..., i; and “F;” occurs in clauses numbered 71, ...,4’,. Let a; = T 1 ks
=/
— _ j ./ —_ . . . _ q .
and @; = ) 3_, 7. Calculate a,,a, for the other variables x; similarly. Let s = >/, 1.

Generate the string:

w= 19141004 1 Om ]IS
Now if f is satisfiable by an assignment that makes exactly one literal per clause true, i.e.,
if f isin /-of-3-SAT, then u is in UKNAP: Pick a; or @; depending on whether z; is true or
false respectively in the 1-of-3 satisfying assignment. Every clause is satisfied by exactly
one literal, so the sum of the chosen a,@’s is exactly s. Thus u € UKNAP.
Furthermore, the reduction can be done in time polynomial in the length of f; e.g., note that
the numbers a;, @;, and s are all of magnitude at most g2, since each is the sum of at most g
distinct numbers between 1 and g, so the length of u is O(¢®) = O(|f]?).



Thus P = NP.

(d) Proceed just as in part 6¢, but if the formula is unsatisfiable, then output the fixed string
11#111, which is not in UKNAP. Again, we have KNAP <,, UKNAP, thus P = NP.
(e) [Extra Credit:] Prove that UKNAP is in P.
(f) [Extra Credit:] Prove that /-of-3-SAT is NP-complete.
7. [Extra Credit:] 7.49



