
CSE 431
Introduction to Theory of Computation

Homework #7
Due: Friday, May 28, 2010

W. L. Ruzzo 15 May 2010

Homework Assignment:

1. 7.20
2. 7.23
3. 7.24
4. 7.25
5. 7.41. (For comparison, 7.40 shows that minimization of DFAs is doable in polynomial time.)
6. Well folks, here’s the event you’ve all been waiting for: 4, count ’em four, proofs that P = NP.

Only you can stop Ruzzo from becoming world-famous! Find and explain the flaw in each of
the “proof” sketches below. Try to be explicit about which hypotheses of critical theorems are
being violated or misused. Give simple, concrete counterexamples where possible.
Let SUBSET-SUM, also know as KNAP, be the set {a1#a2# . . .#an#C | ai and C are integers
coded in binary, and there is a set I ⊆ {1, . . . , n} such that

∑
i∈I ai = C}. Let UKNAP be

the same, except that the integers are coded in unary, i.e., a is represented by the string 1a. It is
known that UKNAP is in P, but KNAP is NP-complete.
(a) For any string u in {1,#}∗ we can easily produce a string v in {0, 1,#}∗ such that u ∈

UKNAP ⇔ v ∈ KNAP . (E.g., if u = 11#1#11111 then v = 10#1#101.) Further,
the transformation can be done in time bounded by a polynomial in the length of u. Thus,
P = NP .

(b) For any string v in {0, 1,#}∗ we can easily produce a string u in {1,#}∗ such that v ∈
KNAP ⇔ u ∈ UKNAP . Further, the transformation can be done in time bounded by a
polynomial in the length of u. Thus, P = NP .

(c) 1-of-3-SAT is the set of 3-CNF Boolean formulas that are satisfiable by truth assignments
making exactly one of the three literals in each clause true. Like 3-SAT, this problem is
known to be NP-complete.
Let f be a formula in conjunctive normal form with exactly 3 literals per clause (3CNF).
Suppose it has variables x1, . . . , xm, and clauses c1, . . . , cq. Suppose “xi” occurs in clauses
numbered i1, . . . , ij and “xi” occurs in clauses numbered i′1, . . . , i

′
j′ . Let ai =

∑ j
k=1 ik,

and ai =
∑ j′

k=1 i′k. Calculate ar, ar for the other variables xr similarly. Let s =
∑ q

i=1 i.
Generate the string:

u = 1a1#1a1# . . .#1am#1am#1s

Now if f is satisfiable by an assignment that makes exactly one literal per clause true, i.e.,
if f is in 1-of-3-SAT, then u is in UKNAP: Pick ai or ai depending on whether xi is true or
false respectively in the 1-of-3 satisfying assignment. Every clause is satisfied by exactly
one literal, so the sum of the chosen a, a’s is exactly s. Thus u ∈ UKNAP .
Furthermore, the reduction can be done in time polynomial in the length of f ; e.g., note that
the numbers ai, ai, and s are all of magnitude at most q2, since each is the sum of at most q
distinct numbers between 1 and q, so the length of u is O(q3) = O(|f |3).

2

Thus P = NP .
(d) Proceed just as in part 6c, but if the formula is unsatisfiable, then output the fixed string

11#111, which is not in UKNAP. Again, we have KNAP ≤p UKNAP, thus P = NP .
(e) [Extra Credit:] Prove that UKNAP is in P.
(f) [Extra Credit:] Prove that 1-of-3-SAT is NP-complete.

7. [Extra Credit:] 7.49

