
CSE 431
Introduction to Theory of Computation

Homework #6
Due: Friday, May 21, 2010

W. L. Ruzzo 15 May 2010

Homework Assignment:

1. In lecture I showed a reduction from 3SAT to Vertex Cover. Apply it to the Boolean formula:

(x1 ∨ x2 ∨ x4) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ ¬x3 ∨ ¬x4)

Note that my reduction is different from the one given in Theorem 7.44 in the text.
Show us the resulting graph and integer “k.” Although the graph is technically just an ordinary
undirected graph, with no vertex- or edge labels of any kind, in the reduction there is a natural
correspondence between literals/clauses in the formula and vertices/vertex groups in the graph;
show this somehow on your graph drawing. (Also, please try to draw your graph neatly and
clearly; e.g., it’s a planar graph, I think. It’s hard to grade a hairball!)
The formula has many satisfying assignments, and the resulting graph has many vertex covers.
The correctness proof for the reduction defines a correspondence between the two. In particular,
given a satisfying assignment, it explains how to choose one (or more) vertex covers. For your
graph, what cover corresponds to the assignment x1 = x2 = x3 = F, x4 = T ? (There should
only be one.) Given that vertex cover, what assignments correspond to it? (There should be
two.) Are they both satisfying assignments?

2. 7.17

3. Let ATBNTM = {〈M,w, $t〉 |M is a nondeterministic TM accepting w in t steps on at least one
computation path }. Prove that ATBNTM is NP-complete. (ATBNTM is “the acceptance problem
for time-bounded nondeterministic TMs,” an analog of ATM, which we showed to be complete
within the class of recognizable languages.)

4. 7.21. It may (or may not) be helpful to note that SAT, as defined in the text, allows arbitrary
Boolean formulas over ∧,∨,¬, not just CNF formulas.

5. Most of the NP -completeness theory we’ve covered deals with language recognition problems,
like SAT: “Does Boolean formula w have a satisfying assignment?” In contrast, for most prac-
tical purposes, we’d really like to have an algorithm that generates such a truth assignment, if
one exists. So isn’t the theory, swell though it is, really addressing the wrong problem? In this
exercise you will show that this is not the case.

(a) Show that generating a solution is at least as hard as checking whether a solution exists.
In particular, let satassign(w) be a function giving some (simple encoding of a) satisfying
assignment for w, if one exists, or giving the empty string if either w isn’t a syntactically
valid formula, or isn’t satisfiable. Show that if satassign is computable by a deterministic
polynomial time Turing machine, then P = NP .

(b) That was too easy. Let satassign′(w) be as above, but let it output anything it wants, in
particular something that looks like a truth assignment, in case either w isn’t a syntacti-
cally valid formula, or isn’t satisfiable. Show that, unless P = NP , satassign′ still isn’t
computable by a deterministic polynomial time Turing machine.

2

(c) Now for the converse — show that if you had a polynomial time deterministic Turing ma-
chine MSAT solving the language recognition problem SAT, then you could build a poly-
nomial time deterministic TM computing the function satassign. Hint: Use MSAT as a
subroutine to tell whether x1 = 0 or x1 = 1 is part of a satisfying assignment. [This prop-
erty of SAT is known as self-reducibility. Most, but perhaps not all, NP -complete problems
behave similarly.]

6. [Extra credit:] 7.33. Note: be careful about formula length. E.g., if x is a subformula you have,
then x ∗ x is twice as long; this is perhaps OK, but if it is part of a construction being applied
recursively, then you might end up with a much longer result.

