
CSE 431
Introduction to Theory of Computation

Homework 4
Due: Friday, April 30, 2010

W. L. Ruzzo 24 April 2010

1. Review the proof (Theorem 5.13) that ATM ≤T ALLCFG . It does not show ATM ≤m ALLCFG .
Explain why not. It does, however, prove ATM ≤m C for some language C related to ALLCFG .
What is C? Justify.

2. A language B is called complete if (a) it is Turing recognizable and (b) every Turing recognizable
language A is mapping reducible to it, i.e., A ≤m B. (It’s not obvious that complete languages exist
but you’ll show below that they do. In fact, they’re widespread: every Turing recognizable language
we’ve seen is either decidable or complete, and it took 20 years for someone to prove that there are
recognizable languages that are neither. One reason for interest in complete languages is that, in some
sense, each embodies the “essence” of Turing recognizability, despite great superficial differences
among them. For example, on the face of it, Hilbert’s 10th problem, PCP and the language in part (c)
have nothing to do with Turing machines, yet they are complete, too.)

(a) Let M be a arbitrary TM. Prove that L(M) ≤m ATM , hence ATM is complete.

(b) Example 5.24 (and lecture notes) show that ATM ≤m HALTTM . Use this to show that
HALTTM is also complete. (Hint: transitivity.)

(c) Prove that EQCFG is complete.

An analog of “completeness” can be defined in other language classes as well:

(d) Prove that there is a co-recognizable language to which all other co-recognizable languages are
mapping reducible.

(e) Prove that there is a decidable language D to which all decidable languages are mapping re-
ducible.

(f) Give two decidable languages that could not be D above.

3. 5.24. Additionally, show that J ≤T ATM , but not J ≤m ATM .

4. I introduced some decidability questions about “programs” in the first few slides of lecture 12. For
the following, you may assume that AProg and HALTProg are undecidable.

“Useless code elimination”: Many optimizing compilers identify (and remove) portions of programs
that cannot be reached on any input. E.g., in

if (True) {
x = 0

} else {
y = 42

}

2

the “y” assignment is useless. Prove that the following problem is undecidable: given a program P
and a location l in that program (say, a line number in the program), is statement l useless?

5. “Bounds checking”: Similarly, some programming languages insist that the value of every array sub-
script be checked at run time to be sure it is within the declared array bounds. Obviously, programs
would run faster if these bounds checks could be eliminated by compile-time verification that the
subscript is safe. E.g., in:

sub P(x) {
a: array[100];
i = 42;
a[i] = x;
a[x] = i;
return a[2];

}

the first assignment to “a” will never cause an array-ref-out-of-bounds problem, but the second one
might. Prove that the following problem is undecidable: given a program P , no input to P will ever
cause P to reference an out-of-bounds array element. Is the problem decidable if the input is specified?
I.e., “Given P,w, will P when run on w attempt to access an out-of-bounds array element?” Would
the answer change if a particular array is named, and/or a particular array reference is specified?
(“Given P,w, a, l, is the reference to a[] on line l when P runs on input w safe?”)

