W. L. Ruzzo

Homework:

1. 3.2e
2. 3.6

CSE 431

Introduction to Theory of Computation
Homework #1
Due: Friday, April 9, 2010

2 April 2010

3. 3.9 Recall from 322 that we have various examples of languages that are not context-free lan-
guages, i.e., are not accepted by any 1-PDA. {a"b"c"|n > 0} and {w#w|w € {0,1}*} are two
standard examples, either of which could be used in this problem.

4. I've

claimed that Turing Machines are equivalent to ordinary computers, but haven’t proved it,

so I'll let you do it.

(a)

(b)

©

5. 3.18
6. 3.19

Sketch briefly how you would program a TM simulator on an ordinary computer. In par-
ticular, how would you keep track of the TM’s tape contents? State? How would they be
updated for each step? [I don’t need a lot of detail here; probably 1/2 page is adequate. You
may assume your computer’s memory is big enough to hold the TM’s tape, or at least the
finite portion of it that the TM will visit during any finite computation.]

My idea of an “ordinary” computer is very simple: It has memory words 0,1, 2, .. . holding
integers. I don’t want to fuss about how many bits a word has (this is a theory class, after
all), so let’s assume a “word” can hold any integer, no matter how big (but finite, of course).
It has only three kinds of instructions — ADD, SUBTRACT, BRANCH-IF-GREATER-
THAN-ZERO. ADD/SUBTRACT are 3-operand instructions, e.g. ADD ¢4, j, k will add
word ¢ to word 7, storing the result in word k. There are also literal and indirect addressing
modes. E.g. ADD i, = j,1 k will add the contents of word 1 to the literal value j, storing
the result in word whose address is stored in word k. An n-bit input is presented by setting
word 0 to n, and putting the input bits in words 1 through n. All other words are initially
zero. Your program is not stored in memory; assume it’s in a separate execute-only memory.
Is this model sufficiently powerful to do the simulation of a TM you sketched in part (a)?
Sketch some of the tricks you’d need to do this. [Again, just a paragraph.]

Now sketch how a “computer” as defined in part (b) could be simulated by a Turing Ma-
chine. You will probably find it convenient to assume your TM is a multi-tape TM. Give
both high-level and implementation-level descriptions, as defined in section 3.3 of the text.
I estimate this will take 1-2 pages. If you’re answer differs greatly from this, please contact
us.

