Reading assignment: Chapter 5 of Sipser.

Instructions: Same as homework #1.

This problem set has **four** regular problems worth 10 points each, and one extra credit problem. Please be as careful as possible in your arguments and your answers.

- 1. Show that there is an undecidable language $L \subseteq \{1\}^*$.
- 2. (Reduction of search problems to decision problems) Let $f : \Sigma_0^* \to \Sigma_0^*$ be an arbitrary function. Define a related language $L_f \subseteq \Sigma^*$ and describe a Turing machine to compute f using a machine that decides L_f . Also show how to decide L_f using a machine that computes f. The alphabet Σ does not have to be the same as Σ_0 .
- 3. Tell whether the following languages are (a) decidable, (b) recognizable but not decidable, (c) co-recognizable but not decidable, or (d) neither recognizable or co-recognizable. Justify your answer.
 - (a) $\{\langle M \rangle : \text{TM } M \text{ halts within 2008 steps on some input}\}.$
 - (b) $\{\langle M \rangle : \text{TM } M \text{ halts within 2008 steps on every input}\}.$
- 4. Let \mathcal{P} be a collection of Turing-recognizable languages. Suppose that there exists an infinite language $L \in \mathcal{P}$ such that no finite subset of L belongs to \mathcal{P} . In this case, prove that the language

$$\mathcal{P}_{\mathrm{TM}} = \{ \langle M \rangle : M \text{ is a TM and } L(M) \in \mathcal{P} \}$$

is not Turing-recognizable.

5. Extra credit. Define a relation $R \subseteq (\Sigma^*)^k$ to be decidable if the language

 $L_{R} = \{ \langle x_{1}, x_{2}, \dots, x_{k} \rangle : (x_{1}, x_{2}, \dots, x_{k}) \in R \}$

is decidable. Define Σ_k for $k \ge 0$ to be the class of all languages L for which there is a decidable (k + 1)-ary relation R such that

$$L = \{x : \exists x_1 \forall x_2 \exists x_3 \cdots Q_k x_k \ R(x_1, x_2, \dots, x_k, x)\},\$$

where the quantifier Q_k is \exists if k is odd and \forall if k is even. We define

$$\Pi_k = \mathrm{co}\Sigma_k = \{L : \bar{L} \in \Sigma_k\}.$$

In this notation, Σ_0 is the set of decidable languages, and Σ_1 is the set of Turing-recognizable languages. Finally, define

$$ALL_{TM} = \{ \langle M \rangle : M \text{ is a TM and } L(M) = \Sigma^* \}.$$

- (a) Prove that ALL_{TM} is Π_2 -complete, in the sense that (i) it belongs to Π_2 and (ii) every language $A \in \Pi_2$ mapping reduces to ALL_{TM} .
- (b) You know how to prove that $ALL_{TM} \notin \Pi_1$ (by proving that $A_{TM} \leq_m ALL_{TM}$). You don't have to do this. Instead, use part (a) to show that $ALL_{TM} \notin \Sigma_1$, i.e. ALL_{TM} is not Turing-recognizable.