CSE 417

NP-completeness reductions

Spring 2006
Paul Beame

| Polynomial time

» Define P (polynomial-time) to be
. the set of all decision problems solvable by
algorithms whose worst-case running time
is bounded by some polynomial in the input
size.

P = U TIME(nk)

The complexity class NP

NP consists of all decision problems where
You can verify the YES answers efficiently
(in polynomial time) given a short
(polynomial-size) certificate

And

No certificate can fool your polynomial time
verifier into saying YES for a NO instance

|NP

» There are many natural, practical
problems for which we don’t know any
polynomial-time algorithms

. e.g. decisionTSP:
. Given a weighted graph G and an integer
k, does there exist a tour that visits all
vertices in G having total weight at most k?

More Precise Definition of NP

. A decision problem is in NP iff there is a
polynomial time procedure verify(.,.),
and an integer k such that
- for every input x to the problem that is a

YES instance there is a certificate ¢ with
|c| < x|k such that verify(x,c) = YES
and

for every input x to the problem that is a

NO instance there does not exist a

certificate ¢ with |c| < [x|* such that

verify(x,c) = YES

o

Keys to showing that

‘ a problem is in NP

. What's the output? (must be YES/NO)
. What must the input look like?
. Which inputs need a YES answer?
.+ Call such inputs YES inputs/YES instances
. For every given YES input, is there a
certificate that would help?
. OK if some inputs need no certificate
» For any given NO input, is there a fake
certificate that would trick you?

Example: CLIQUE is in NP

procedure verify(x,c)

if
c is a well-formed representation of a
graph G = (V, E) and an integer k,

and
c is a well-formed representation of a
vertex subset U of V of size k,

and
Uis acliquein G,

then output "YES"

else output "I'm unconvinced"

| Is it correct?

For every x = (G,k) such that G contains a
k-clique, there is a certificate ¢ that will
cause verify(x,c) to say YES,

. ¢ = a list of the vertices in such a k-clique

And no certificate can fool verify(x,[linto
saying YES if either
. X isn't well-formed (the uninteresting case)

» X =(G,k) but G does not have any cliques
of size k (the interesting case)

Solving NP problems

without hints

The only obvious algorithm for most of
these problems is brute force:

. try all possible certificates and check each one to
see if it works.

» Exponential time:
2" truth assignments for n variables
n! possible TSP tours of n vertices
[Ej possible k element subsets of n vertices

etc.

| What We Know

Nobody knows if all problems in NP can be
done in polynomial time, i.e. does P=NP?

» one of the most important open questions in all of
science.

» huge practical implications
Every problem in P is in NP
» one doesn’t even need a certificate for problems in
P so just ignore any hint you are given
Every problem in NP is solvable in
exponential time

P and NP

EXP

EXP - U, TIME(2")

1

NP-hardness &

. ‘ NP-completeness

Alternative approach to proving problems not

inP

» show that they are at least as hard as any problem
in NP

Rough definition:

» A problem is NP-hard iff it is at least as hard as
any problem in NP

» A problem is NP-complete iff it is both
NP-hard
in NP

NP-hardness &

NP-completeness

» Definition: A problem B is NP-hard iff
every problem AONP satisfies A <,B

. Definition: A problem B is NP-complete
iff B is NP-hard and B ONP

Even though we seem to have lots of hard
problems in NP it is not obvious that such
super-hard problems even exist!

13

| | P and NP

NP-complete

Reductions by Simple Equivalence

» Show: Independent-Set <, Clique

- Independent-Set:

. Given a graph G=(V,E) and an integer k, is
there a subset U of V with |U| = k such that
no two vertices in U are joined by an edge.

. Clique:

. Given a graph G=(V,E) and an integer k, is
there a subset U of V with |U| = k such that
every pair of vertices in U is joined by an
edge.

15

. | Independent-Set <, Clique

. Given (G,k) as input to Independent-Set
where G=(V,E)

. Transform to (G’ k) where G’=(V,E’)
has the same vertices as G but E’
consists of precisely those edges that
are not edges of G

. Uis an independent setin G
= Uisacliquein G’

_ Satisfiability

. Boolean variables x,,...,Xx,
- taking values in {0,1}. O=false, 1=true
» Literals
. X;or =x fori=1,...,n
. Clause
. alogical OR of one or more literals
» e.g. (Xq O=Xz OX; OXyp)
. CNF formula
. alogical AND of a bunch of clauses

17

_ ‘ Satisfiability

. CNF formula example
o (Xq OaX5 OX7 OXq0) O(X, 01X, 00X OX5)
- If there is some assignment of 0’s and
1’s to the variables that makes it true
then we say the formula is satisfiable
. the one above is, the following isn’t
o Xq O (=X OXy) O (2%, OX3) 00X,
. SAT: Given aformula F, is it
satisfiable?

. Cook-Levin Theorem

» Theorem (Cook-Levin 1971):
SATeP - P=NP

Follows by showing that SAT is NP-complete

19

| | Implications of Cook’s Theorem?

= There is at least one interesting super-
hard problem in NP

- Is that such a big deal?

. YES!

- There are lots of other problems that can
be solved if we had a polynomial-time
algorithm for SAT

. Many of these problems are exactly as
hard as SAT

20

Recall this useful property of
: polynomial-time reductions

» Theorem: If A <pB and B <,C then

21

| | Cook-Levin Theorem & Implications

» Theorem: SAT is NP-complete

Corollary: C is NP-hard = SAT <,C
(or B <C for any NP-complete problem B)

Proof:

. If B is NP-hard then every problem in NP

polynomial-time reduces to B, in particular SAT
does since it is in NP

» For any problem A in NP, A <,SAT and so if SAT
<pC we have A<, C.

therefore C is NP-hard if SAT <,C

22

Steps to Proving Problem B is

) NP-complete

. Show B is NP-hard:
. State:’Reduction is from NP-hard Problem
A
» Show what the map fis
» Argue that f is polynomial time

= Argue correctness: two directions Yes for
A implies Yes for B and vice versa.

. Show B is in NP
. State what certificate is and why it works
» Argue that it is polynomial-time to check.

23

Another NP-complete problem:

) ‘ Satisfiability s;Independent-Set

A Tricky Reduction:

» mapping CNF formula F to a pair <G k>
» Let m be the number of clauses of F

. Create a vertex in G for each literal in F
» Join two vertices u, v in G by an edge iff

u and v correspond to literals in the same
clause of F, (green edges) or

u and v correspond to literals x and = x (or vice
versa) for some variable x. (red edges).

. Setk=m
. Clearly polynomial-time

24

. Satisfiability <PIndependent-Set

F: (x;0-x5 0x,) O(X, 0%, OX4) O(X, O-x, OX3)

25

‘ | Satisfiability <PIndependent-Set

Correctness:

. If Fis satisfiable then there is some assignment that
satisfies at least one literal in each clause.

» Consider the set U in G corresponding to the first satisfied
literal in each clause.

|Ul=m
Since U has only one vertex per clause, no two vertices
in U are joined by green edges
Since a truth assignment never satisfies both x and -x,
U doesn’t contain vertices labeled both x and = x and so
no vertices in U are joined by red edges

Therefore G has an independent set, U, of size at least
m

- Therefore (G,m) is a YES for independent set.

26

. Satisfiability <PIndependent-Set

1 0 1 1 0o 1 1 0 1
F: (x;0-x5 0x,) O(X, 0%, OX4) O(X, O-x, Ox3)

Given assignment X,=X,=X3z=X,=1,
U is as circled

27

‘ | Satisfiability <PIndependent-Set

Correctness continued:
» If (G,m) is a YES for Independent-Set then there is
a set U of m vertices in G containing no edge.

Therefore U has precisely one vertex per
clause because of the green edges in G.
Because of the red edges in G, U does not
contain vertices labeled both x and = x
Build a truth assignment A that makes all
literals labeling vertices in U true and for any
variable not labeling a vertex in U, assigns its
truth value arbitrarily.
By construction, A satisfies F

. Therefore F is a YES for Satisfiability.

28

< Satisfiability <PIndependent-Set
0o 10 2 1 0 2 1 0

F: (x;0-x; 0x,) O(x, 07X, Ox3) O(X, 0%, OX5)

Given U, satisfying assignment
iS X;=X3=X,4=0, X,=0 or 1

29

‘ ‘ Independent-Set is NP-complete

We just showed that Independent-Set is NP-
hard and we already knew Independent-Set
is in NP.

Corollary: Clique is NP-complete

. We showed already that
Independent-Set <, Clique and Clique is
in NP.

30

Reductions from a Special Case to a

General Case

. Show: Vertex-Cover <p Set-Cover

» Vertex-Cover:
. Given an undirected graph G=(V,E) and an integer
k is there a subset W of V of size at most k such
that every edge of G has at least one endpoint in
W? (i.e. W covers all edges of G).

. Set-Cover:
» Given a set U of n elements, a collection S,,...,S,
of subsets of U, and an integer k, does there exist
a collection of at most k sets whose union is equal
to U?

31

_ | The Simple Reduction

-~ Transformation f maps
(G=(V,E),k) to (U,S;,...,S,,k")
» U<E

For each vertex vCJV create a set S,
containing all edges that touch v

- K<k

Reduction f is clearly polynomial-time to
compute

We need to prove that the resulting
algorithm gives the right answer.

r

32

Proof of Correctness

Two directions:
. If the answer to Vertex-Cover on (G,k) is YES then
the answer for Set-Cover on T(G,k) is YES

If a set W of k vertices covers all edges then
the collection {S, | v W} of k sets covers all of

. If the answer to Set-Cover on T(G,k) is YES then
the answer for Vertex-Cover on (G,k) is YES

If a subcollection S‘,1,...,S‘,k covers all of U then
the set {vy,...,v,} is a vertex cover in G.

33

| More Reductions

. Show: Independent Set <, Vertex-Cover

» Vertex-Cover:
» Given an undirected graph G=(V,E) and an integer
k is there a subset W of V of size at most k such
that every edge of G has at least one endpoint in
W? (i.e. W covers all edges of G).

. Independent-Set:

» Given a graph G=(V,E) and an integer k, is there a
subset U of V with |U| = k such that no two
vertices in U are joined by an edge.

34

| Reduction Idea

Claim: In a graph G=(V,E), S is an
independent set iff V-S is a vertex cover
Proof:
. = Let S be an independent set in G
Then S contains at most one endpoint of each
edge of G
At least one endpoint must be in V-S
V-S is a vertex cover
. [JLet W=V-S be a vertex cover of G
Then S does not contain both endpoints of any
edge (else W would miss that edge)
S is an independent set

35

| ‘ Reduction

- Map (G,k) to (G,n-k)
- Previous lemma proves correctness

. Clearly polynomial time

- We also get that
» Vertex-Cover <, Independent Set

36

Problems we already know are NP-

complete

» Satisfiability

. Independent-Set
» Clique

» Vertex-Cover

. There are 1000’s of practical problems
that are NP-complete, e.g. scheduling,
optimal VLSI layout etc.

37

| Is NP as bad as it gets?

- NO! NP-complete problems are
frequently encountered, but there's
worse:

» Some problems provably require
exponential time.
Ex: Does P halt on x in 2| steps?
. Some require 2, 27, 27 . steps

. And of course, some are just plain

uncomputable
38

A particularly useful problem for

proving NP-completeness

3-SAT: Given a CNF formula F having
precisely 3 variables per clause
(i.e., in 3-CNF), is F satisfiable?

Theorem: 3-SAT is NP-complete
Alternate Proof based on CNFSAT:
. 3-SATONP

Certificate is a satisfying assignment

Just like SAT it is polynomial-time to check the
certificate

39

| CNFSAT <,3-SAT

» Reduction:

» map CNF formula F to another CNF
formula G that has precisely 3 variables
per clause.

G has one or more clauses for each
clause of F
G will have extra variables that don’t
appear in F

. for each clause C of F there will be a
different set of variables that are used only
in the clauses of G that correspond to C

40

CNFSAT <,3-SAT

Goal:

» An assignment a to the original variables makes
clause C true in F iff
there is an assignment to the extra variables that
together with the assignment a will make all new
clauses corresponding to C true.
Define the reduction clause-by-clause
-~ We'll use variable names z; to denote the extra
variables related to a single clause C to simplify
notation
in reality, two different original clauses will not
share z;

41

| ‘ CNFSAT <,3-SAT

. For each clause Cin F:

» If C has 3 variables:
PutCin G as is

. If C has 2 variables, e.g. C=(x, O=X,)
Use a new variable z and put two clauses in G

(x; O-x502) O(x; O-x30~2)

If original C is true under assignment a then
both new clauses will be true under a

If new clauses are both true under some
assignment b then the value of z doesn'’t help
in one of the two clauses so C must be true
under b

42

| CNFSAT <,3-SAT

. If C has 1 variable: e.g. C=x,
Use two new variables z,, z, and put 4
new clauses in G
(xy 0=z, 0-2p) O(x,0-2,02,) O
(x4 024 0-2y) U(x,02,02,)
If original C is true under assignment a
then all new clauses will be true under a
If new clauses are all true under some
assignment b then the values of z, and
z, don’t help in one of the 4 clauses so
C must be true under b

43

| CNFSAT <,3-sAT

. If C has k 24 variables: e.g. C=(x, O... Ox,)
Use k-3 new variables z,,...,z, , and put k-2 new
clauses in G
(x;0x,02,) O(=2z,0x5025) O(~230x,02,) O...
0 (=23 0%, 02y5) O (=2, 0%, Ox)
If original C is true under assignment a then some
X; is true for i < k. By setting z; true for all j<i and
false for all j = i, we can extend a to make all new
clauses true.
If new clauses are all true under some assignment
b then some x; must be true for i < k because
Z, 0(=2,025) O... O (2230 2, 5) 0=z, is not
satisfiable

44

_ Graph Colorability

Defn: Given a graph G=(V,E), and an integer k,

a k-coloring of G is

» an assignment of up to k different colors to the
vertices of G so that the endpoints of each edge have
different colors.

3-Color: Given a graph G=(V,E), does G have

a 3-coloring?

Claim: 3-Color is NP-complete

Proof: 3-Color is in NP:

- Hint is an assignment of red,green,blue to the
vertices of G

. Easy to check that each edge is colored correctly

45

. | 3-SAT <.3-Color

» Reduction:

. We want to map a 3-CNF formula (F) to a
graph (G) so that
G is 3-colorable iff F is satisfiable

46

_ 3-SAT <,3-Color

A,

Base Triangle

F

47

< ‘ 3-SAT <.3-Color

=X X

Variable Part:

in 3-coloring, variable
colors correspond to
some truth assignment
(same color as T or F)

—|X2

X4

—|X1

48

Clause Part:
Add one 6 vertex gadget per clause connecting
its ‘outer vertices’ to the literals in the clause

49

Any truth assignment satisfying the formula
can be extended to a 3-coloring of the graph

50

Any 3-coloring of the graph colors
each gadget triangle using each color

51

Any 3-coloring of the graph has an F opposite
the O color in the triangle of each gadget

Any 3-coloring of the graph has T at the
other end of the blue edge connected to the F

53

Any 3-coloring of the graph yields a
satisfying assignment to the formula

54

More NP-completeness

» Subset-Sum problem
Given n integers wy,...,w, and integer W

Is there a subset of the n input integers
that adds up to exactly W?

O(nW) solution from dynamic programming
but if W and each w; can be n bits long then
this is exponential time

55

| 3-SAT <.Subset-Sum

» Given a 3-CNF formula with m clauses
and n variables
. Will create 2m+2n numbers that are
m+n digits long
-~ Two numbers for each variable x;
t; and f; (corresponding to x; being true
or X; being false)
= Two extra numbers for each clause

u; and v; (filler variables to handle
number of false literals in clause C;)

56

3-SAT <,Subset-Sum

1234..n1234..m O x0x)
t,/1000...00010...1
£,1000..01001...0
,0100...00100...1
£0100..00011...0
U;=v, (0000... 01000..0

U2=Y210000...00100...0

W 1111..13333..3

57

10

