ML and DL for ncRNA prediction and classification
problems:
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Deep learning (DL) models are
growing in popularity for ncRNA
prediction and classification
problems
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Noviello TMR, Ceccarelli F, Ceccarelli M, Cerulo L (2020) Deep learning predicts short non-coding
RNA functions from only raw sequence data. PLOS Computational Biology 16(11): €1008415.

https://doi.org/10.1371/journal.pcbi. 1008415
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https://doi.org/10.1371/journal.pcbi.1008415
https://doi.org/10.1371/journal.pcbi.1008415

DL combined with ncRNA motif finding:
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o For discovered motifs, create test sets of your I
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DL Predictions

Yao Z, Barrick J, Weinberg Z, Neph S, Breaker R, et al. (2007) A Computational Pipeline for High-
Throughput Discovery of cis-Regulatory Noncoding RNA in Prokaryotes. PLOS Computational Biology
3(7): e126. https://doi.ora/10.1371/journal.pcbi.0030126


https://doi.org/10.1371/journal.pcbi.0030126

Potential interesting questions:

Feature attribution: figuring out what inputs
were the most important for a model’s
prediction

For sequence based ncRNA DL predictors,
how do their predictions relate to RNA
secondary structures? Can we apply current
feature attribution methods to figure this out?
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https://github.com/slundberg/shap



e Some suggested steps:

o Review state of the art DL models for those which (Ve ) (omten ) (e ] ([ )
use only sequence features for predictions & select ER = = (=D
some to try e —_—

o Review state of the art feature attribution methods | _ c:block |
for DL networks (deepSHAP, deepLIFT, Integrated | FIa:ten |
Gradients, etc.) & select some to try f

o Gather a test set of structures and sequences | C°"V°'“t;°"b'°°k |
Predict the function/families and run the attribution | Onehotencoding_|
methods for these predictions ...AUUAJUCCAA...

o Visualize importance {quct::;q ::E;-c"es

o Look for what the networks might learn implicitly

Chantsalnyam T, Lim DY, Tayara H, Chong KT (2020) ncRDeep:
Non-coding RNA classification with convolutional neural network.
Computational Biology and Chemistry 88: 107364.
https://doi.ora/10.1016/j.compbiolchem.2020.107364.

about secondary structure
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