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Overview

Course Web Pages:
https://courses.cs.washington.edu/courses/cse428/19sp/

TAs:

Daniel Jones

Group-Project-oriented:

Typically teams of ~3-4 students

I will offer some projects ideas

I am open to student-generated ideas

“computers” + “biology” 

(+ reasonable scope + something I can facilitate)

 2



Project Challenges

Organization & Scheduling

Bio Jargon

Tools from elsewhere

Did I mention Organization & Scheduling?
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What I hope you will learn

See previous slide!

You’ll see real DNA/RNA seq data in all of them, plus 

Some mixture of: 

data structures, 

algorithms, 

data analytics, 

statistics, 

biology, 

HCI, 

ML, …
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Project Evaluation

Weekly Goals + Progress reports

Some midcourse checkpoint

Final written reports + oral presentations

Including evaluation of code, test results, etc. 

Peer comments
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Our suggestions grow out of technical issues (“bias” and 
“dropout”) in RNA sequencing, outlined in the following few 
slides.  For today, at least, the details are not critical; key 
points I hope you get are that 
a) we can sequence RNA from cells
b) it’s informative
c) it’s quantitative, but
d) technical artifacts bias that quantitative information, and

e) there are unexplored issues surrounding this, hence, project 
ideas: understanding the sources and extent of the biases and 
their impact on various downstream analyses. 

Project Ideas



Some Background
RNA sequencing



DNA Sequencer

⬇        ⬇

⬇
map to genome, analyze

Millions of reads, 
say, 100 bp each

RNAseq Example
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map to genome,                      
compare & analyze

Convert to DNA

Isolate RNA    



Goals of RNAseq
1. Which genes are being expressed?

How? Map them to a reference genome and/or
assemble reads (fragments of mRNAs) into (nearly) full-length 
mRNAs

2. How highly expressed are they?
How?  Count how many fragments come from each 
gene–expect more-highly-expressed genes to yield 
more reads per unit length

3. What’s same/diff between, e.g., tumor/normal?  

4. Which alleles are being expressed?  Differentially 
expressed?  Which cell types? How variable are they? 
… … …
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RNAseq
What does it look like?



RNA seq

RNA →                 → Sequence →           → Count
cDNA, fragment, 
end repair,  A-tail, 

ligate, PCR, …

QC filter, 
trim, map, 

…

It’s so easy, what could possibly go wrong?
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What we expect: 
Uniform Sampling

    Uniform sampling of 4000 “reads” across a 200 bp “exon.”
Average 20 ± 4.7 per position, min ≈ 9, max ≈33 
 I.e., as expected, we see ≈ μ ± 3σ in 200 samples

Count reads starting at 
each position, not those 
covering each position



Fragment Bias
The bad news: random fragments are not so uniform.

The good news: non-uniformity can be predicted the nucleotide sequence.

What we get: highly non-uniform coverage

–––––––––––       3’ exon      –––––––––

200 nucleotides

Mortazavi data

E.g., assuming uniform, the 8 peaks above 100 are > +10σ above mean~
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each position, not those 
covering each position



Fragment Bias
The bad news: random fragments are not so uniform.

The good news: non-uniformity can be predicted the nucleotide sequence.

What we get: highly non-uniform coverage

–––––––––––       3’ exon      –––––––––

200 nucleotides

Mortazavi data

E.g., assuming uniform, the 8 peaks above 100 are > +10σ above mean~
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Uniform

Actual

Count reads starting at 
each position, not those 
covering each position

How to make it more uniform?
A: Math tricks like averaging/smoothing (e.g. “coverage”) 

or transformations (“log”), …, or 

B: Try to model (aspects of) causation  
     (& use increased uniformity of result as a measure of success)         

WE DO 
THIS



Fragment Bias
The bad news: random fragments are not so uniform.

The good news: non-uniformity can be predicted the nucleotide sequence.

not perfect, but better:
38% reduction in LLR 

of uniform model; 
hugely more likely

What we get: highly non-uniform coverage

200 nucleotides
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The Good News: we can (partially) correct the bias



Fragment Bias

Fitting a model of the sequence surrounding read starts
lets us predict which positions have more reads.

Bias is ^ sequence-dependent

                  Reads

and platform/sample-dependent

(in part)
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RNA-Seq

Fig. 4. The KL divergence compares the frequency of k-mers (here, for k =1 and k =4) surrounding the starts of aligned reads to the frequencies expected
under the assumption of uniform sampling from within exons. A large divergence indicates significant bias. Plotted here is the divergence from unadjusted
read counts as well as after adjusting read counts using each method.

3.1 Kullback–Leibler divergence
Plotting the nucleotide frequencies (Fig. 1), we observe an obvious
bias. To quantify the non-uniformity observed in these plots, we use
the symmetrized Kullback–Leibler (KL) divergence (Kullback and
Leibler, 1951).

If fx is the background frequency of a k-mer x, and f ′
x the observed

frequency, the KL divergence is computed as

Dk(f ,f ′)=
∑

x

(
fx log2(fx/f ′

x)+f ′
x log2(f ′

x/fx)
)

where the sum is over all k-mers. This can be thought of as a
measure dissimilarity between two probability distributions. If fx
and f ′

x for a k-mer x are approximately equal, their log-ratio will be
approximately zero, leading to a small KL divergence (exactly zero,
when the distributions are equal). Conversely, very different k-mer
frequencies will result in a larger KL divergence.

When computing the KL divergence, there is a risk of the measure
being dominated by a small number of reads with many duplicates.
Yet, given the high coverage of the exons being tested, if duplicate
reads are excluded, it may not capture the full effect of bias
correction. To account for these opposing concerns, we adopt the
following method: all reads contained within the exon being tested
are ranked by the number of duplicates. We then exclude reads that
are ranked in the lower half, and count each read ranked in the upper
half only once, ignoring duplicates.

Under the assumption of uniform sampling, the set of reads
ranked in the upper half should not depend on sequence, and
we should expect the KL divergence to be low. We compute the
divergence by reweighting the read counts using the predicted bias
coefficient before ranking the reads, choosing those reads ranked
in the upper half of each exon, ignoring duplicate reads, and then
tallying frequencies of overlapping k-mers. The k-mer distribution
obtained is then compared to a background distribution obtained by
redistributing reads uniformly at random within their exons.

We repeated the procedure for k ∈ {1,2,3,4,5,6}. The results
of this analysis are plotted in Figure 4, for k =1 and k =4. The
remaining cases are plotted in Section 4 in Supplementary Material.

3.2 Poisson regression
In this comparison, we measure the uniformity of the data, or
more precisely how well the counts conform to a Poisson process.

The assumption of positional read counts following a Poisson
distribution is known to be a poor fit (Srivastava and Chen, 2010),
but measuring the improvement in the fit derived from correcting
for bias remains a principled and easily interpreted criterion. This
increase in uniformity is illustrated in Figure 2.

We perform maximum-likelihood fitting of two models. In the
null model, the Poisson rate is fixed for each test exon. That is, for
position j within exon i, the rate is λij =ai where ai is the parameter
being fit. For comparison, we then fit a model in which the rate is
also proportional to the predicted bias coefficients: λ′

ij =aibij .
If the null model has log-likelihood L, and the bias-corrected

model L′, a simple goodness of fit measure is the improvement in
log-likelihood [a statistic commonly known as McFadden’s pseudo-
coefficient of determination (McFadden, 1974)], defined as, R2 =
1− L′/L.

This measure can be interpreted as the improvement in fit over
the null model, with R2 =1 indicating a perfect fit, occurring when
the model being evaluated achieves a likelihood of 1. Smaller
number indicate an increasingly worse fit, with R2 =0 representing
no improvement over the null model, and R2 =0.5, for example,
indicating the model has a log-likelihood equal to half that of the
null model (a large improvement, corresponding to, for example, the
likelihood increasing over 100-fold if the initial log-likelihood was
− 9.6, which is the mean per-position log-likelihood under the null
model). This measure has the added advantage that it can take on
values <0, indicating that the model has worse fit than the null model
(i.e. when adjusting read counts according the bias coefficients leads
to less uniform read coverage).

We compute R2 for each of the test exons, giving us a sense
of the variability of the effectiveness of each model. The results
of this analysis are plotted in Figure 5. To summarize each model
with a single number, we can examine the median R2 value, as
listed in Table 2. Our method shows a highly statistically significant
improvement in performance over other methods in all but one
comparison, in which the MART method performs equally.

3.3 qRT-PCR correlation
We used sequencing data previously published by Au et al.
(2010) to evaluate the effect bias correction has on correlation
to measurements made by TaqMan RT–PCR, made available by
the the Microarray Quality Control project (Shi et al., 2006).
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Project Idea:
Next Few Slides

Open-ended, underspecified; as you think about them, 
both let your imagination run free, and think carefully 
about how to scale and stage your project so you can 

collect low-hanging fruit before potentially getting lost in 
the open-ended weeds.  (Fortunately, I don’t think mixing 

metaphors is a crime in this state–at least not yet.) 



Idea #1



Idea #1: Bias Distorts Allele Specific Expression Analysis?

Background: An allele is one variant of a gene, e.g., the A/B/O 
alleles that determine “Blood Type.”  You have 2 alleles of every 
gene (partially excluding those on X,Y chromosomes).  E.g., if 
you got A from mom & B from dad, you have AB blood-type; if 
you have O from both, you have O blood-type.  

Usually, both alleles are “expressed”, i.e., made into proteins, as 
in the case above, but there are exceptions where only one of 
the two alleles is expressed (“allele specific expression” or 
ASE, with dozens of examples known in humans), and 
potentially severe consequences for disrupting this (e.g., see 
“Prader-Willi/Angelman syndromes”).

How do you detect ASE? One way: compare DNAseq to 
RNAseq in an individual; if DNA shows 2 alleles, but RNA only 
sees one of them (or much more of one than the other), then 
you call it ASE.
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Idea #1: Bias Distorts Allele Specific Expression Analysis?

Alleles differ in a small number of positions; bias is sensitive to 
sequence; so a change in bias at a few changed positions might 
falsely appear to be ASE, or falsely mask true ASE.

Goal: Explore the effect of SeqBias on ASE prediction.  If 
deemed significant, develop a tool to automatically “correct” 
for it and apply this too a variety of data sets.

Motivating Questions: Does bias compromise our ability 
to detect ASE from RNAseq data?  What can we do about it?

Some Suggested Steps: 

Make a basic ASE pipeline; what do you see?

Learn state-of-the-art in ASE discovery; refine your pipeline

Add SeqBias correction to that pipeline

Assess whether it makes a difference

Apply to a variety of data?
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Idea #2



Idea #2: in single-cell RNAseq, bias from fragment-dropout?   

Say 107 reads from 104 genes; in bulk RNAseq,  = 103 
reads per gene–good statistics.

But in single-cell RNAseq, say, for 103 cells, only  
≈1/gene/cell

I.e., dropout: many zeros for expressed genes.

Common approaches to ameliorate this bias:

a) "Impute" missing data from "similar" cells

b) "Model" dropout via "zero-inflated distribution"

Motivating Q: for "fragment-based" sequencing 
protocols, i.e., we randomly fragment full-length 
transcripts and sequence the fragments, is "dropout" a 
problem?  What should we do about it?
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Misc. Projects From 
428’s Past



428 Past Projects

Just to give you some idea of scope, here are some 
projects from previous iterations of 428:

• Convenient web interface for "phylogenetic 
footprinting" in prokaryotes

• Build a genome assembler

• Machine learning applied to cancer genomics

• Convenient web interface for exploring "Foldit" 
results

• # 0, 3, 4 below
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Idea #0: Visualizing and Exploring SeqBias

It’s hard to think about it if you can’t visualize it.

Goal: Develop a tool to automatically measure, quantify, and 
display summaries of bias in specific RNAseq data sets, and 
apply this too a variety of them.

Motivating Questions: How does bias vary from one data set 
to another?  Is more modern data less biased?  How does it 
impact down-stream analyses?

Some Suggested Steps: 

Learn state-of-the-art in RNAseq Quality Control

Add SeqBias, starting with figures like those in Daniel’s paper

Other metrics?

Apply to a variety of data?

HCI issues in presenting such data to potential users?

Very Speculative: can we implicate causes of bias?
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Idea #3: Impact of  bias in other RNAseq use cases 

Other RNAseq applications may be even more 
susceptible to distortion due to seqbias, e.g. ribosome 
foot-printing and RNA structure prediction (SHAPE).
Goal: Explore the effect of SeqBias on these tasks.  If deemed 
significant, develop a tool to automatically “correct” for it and 
apply this too a variety of data sets.

Motivating Questions: Does bias compromise accuracy of our 
predictions from RNAseq data?  What can we do about it?

Some Suggested Steps: 

Learn state-of-the-art in these applications

Add SeqBias correction to that pipeline;  a key is defining  an 
appropriate “background”

Assess whether it makes a difference

Apply to a variety of data?
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Idea #4: Improved crossover detection–Background  

Jargon:   A position in your genome where your mom’s 
nucleotide agrees with your dad’s is called homozygous 
(~99.9%); places where they disagree are heterozygous 
(the other .1%).

How might you find heterozygous sites?  Perhaps 
DNAseq will give you “coverage” ~100 at a site, with, 
say 60 A’s and 40 G’s:
    AGCGATATGGAGTAGAA  
      CGATATGGGGTAGAATACCA  
         TATGGGGTAGAATACCAGGAG  
           TGGAGTAGAATACCAGGAGCAT  
             GAGTAGAATACCAGGAGCATTT  
 
…GATAGCGATATGGAGTAGAATACCAGGAGCATTTGACCATACTAC… 
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Idea #4: Improved crossover detection–Background  

The phasing problem: Given a pair of nearby heterozygous 
sites, say A/G at position i and G/T at position j > i, does the G 
at pos j appear on the same chromosome as the A at i or the 
G at i?  I.e., do we have this: 

              i         j  
        - - - A - - - - G - - -  
        - - - G - - - - T - - -  

or this:
        - - - A - - - - T - - -  
        - - - G - - - - G - - - 

?

How could we tell?  Again, maybe DNAseq: If there are single 
reads covering both pos i and pos j, do they show a mixture of 
A--G with G--T or a mixture of A--T with G--G?
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Potential confusion to 
avoid: each cartoon 
shows one strand on 
each of the 2 
chromosomes, not 
“base pairs” on one 
chromosome (A:T 
and G:C base pairs.)



Idea #4: Improved crossover detection–Background  

The crossover problem: Given the same setup, but looking at 
two individuals, perhaps siblings, if we see this in one: 

              i         j  
        - - - A - - - - G - - -  
        - - - G - - - - T - - -  

and this in the other:
        - - - A - - - - T - - -  
        - - - G - - - - G - - - 

how could that be?  

One likely answer: crossover/recombination (in meiosis)

Another possibility: a phasing error!
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Idea #4: Improved crossover detection–Background  

Is crossover distinguishable from a phasing error? Probably not 
in isolation, but what if we have several overlapping i-j pairs that 
are phased in both individuals?  Then we can try for a 
probabilistic assessment.  E.g., abstracting: 
              i         j  
        - - - A - - - - G - - -         
        - - - G - - - - T - - -  

        - - - A - - - - T - - -  
        - - - G - - - - G - - -  

as :
              | -  X  - |                            | - - - - | 

What does this suggest?:

       | - - - - | | - - - - |            |- - - -|             |- - - -| 

         | - - -  X  - - - |                     |- - -  X  - - -| 

(If top gap is short vs long, error in “X” is more/less likely)

 31

              i         j  
        - - - A - - - - G - - -         
        - - - G - - - - T - - -  

        - - - A - - - - G - - -  
        - - - G - - - - T - - - 

vs



Idea #4: Improved crossover detection  

Data from a pair of closely related individuals, after being 
(separately) phased, may/will show crossovers.  Are they real/
how many of them are real?

Goal:  build a tool to find maximum likelihood estimate of # 
crossovers, based simple models of xover/error.

Motivating Questions: Can we do better than blindly trusting 
the phasing results.

Some Suggested Steps: 

Learn state-of-the-art in these applications

Model as max likelihood solution to system of linear eqns.
x1+x2+e1      ≡ 0 (mod 2)
x4+x5+e2      ≡ 0 (mod 2)
x2+x3+x4+e3 ≡ 1 (mod 2)

Good Alg?  NP-hard? Good heuristics? Decomposes?

Apply to a variety of data (especially mine; phasing on up)?
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Next steps
review slides

which (if any) appeals?
form groups

skim references on web
talk to/email me/Daniel

we may have fragments of code for parts of this  
(may or may not be useful…)

Form a Group/Form a Plan!


