CSE 428 II

Project Ideas:

- #1: Visualizing and Exploring SeqBias
 - Develop a tool to automatically measure, quantify, display summaries of bias in specific RNAseq data sets and apply this to a variety of them
 - How does bias vary from one data set to another? Is more modern data less biased? How does it impact down-stream analyses?
 - Steps:
 - Learn SOA RNAseq Quality Control
 - Add SeqBias, starting with figures like those in Daniel's paper
 - Other metrics?
 - Apply to variety of data?
 - HCI Issues in presenting data?
 - Can we implicate cause???
 - Challenges:
 - File formats
 - Really understand RNAseq
 - HCI challenges
 - Some statistics involved
- #2: Bias Distorts Allele Specific Expression Analysis
 - Alleles differ ina small number of positions; bias is sensitive to sequence; so a change in bias at a few changed positions might falsely appear to be ASE or falsely mask ASE
 - Explore the effect of SeqBias on ASE prediction. If deemed significant, develop a tool to automatically "correct" this.
 - This can be really important
 - Does bias compromised our ability to detect ASE? What can we do?
- #3: Impact o bias in other RNAseq use cases
 - RNA structure prediction (SHAPE)
 - Most RNA is single threaded (no double helix), but it can fold back on itself. How would you predict these structures?
 - If you have an enzyme that chews away single stranded RNA but leaved double stranded in tact – then you can detect double-stranded regions. Bias may be relevant here (missing pieces or seeing over representation)
 - Ribosome foot-print

- Ribosome decodes RNA to create protein (3 bases to one amino acid)
- Moves at uniform rate through the RNA, mostly
- But going faster or slower could mean something
- Foot-printing involves freezing RNA with ribosome attached, digest away RNA (except bit protected by ribosome), now sequence RNA to get a snapshot of where the ribosomes were
- Again, bias has implications here (overrepresentation could mean a pause in ribosome, or could just be bias)
- Challenges:
 - Understand protocol
 - Understand SOA
 - Bit of theoretical modeling
 - Bias correction models need a background mode
 - Need enough data that is `neutral'
 - We need to know what's artificially amplified and what isn't
 - So FIRST figure out how to get a background model
 - Guess both protocols produce enough background RNA that if we can separate it out from signal, that's enough
- #4: Improved crossover detection
 - Background
 - A position in your genome where Mom and Dad agree homozygrous (99.9%), where they disagree is heterozygrous (e.g. A instead of T or something)
 - To find these map your reads to genome, find where there are differences
 - (usually there are 2 common letters, very occasionally 3)
 - 30x coverage on any place in the genome is a good lower bound – you really want 100x or so
 - Phasing problem
 - IF we have two heterozygous positions, which are on the same chromosome? (A/G G/T) or (A/G.....T/G)
 - We have 4 potential proteins, which 2 are really being produced?

- You might have some reads that cover both (if they're within 100 base pairs)
- Depending on sequencing, you may have some sense of position (you control the size of the fragments)
- Crossover problem
 - What if we have two siblings with slightly different genomes (A/G....G/T) v (A/G.....T/G)
 - It could just be different (genetic crossover/recombination, meiosis) or it could be a phasing error
- However, if you have multiple phasing calls in the same vicinity, can you increase/lower confidence phasing calls are correct?
- There is an unpublished solution, but it's not perfect
 - It finds more crossovers than it should
- Note: any even number of crossovers will show up as 0, any odd number will show up as 1
- You could maybe set up a system of linear equations of nonoverlapping intervals
- What's involved?
 - Understand tools for identifying phasing, heterozygous positions
 - They usually give some sort of error rate estimate understand it
 - Decode output
 - Construct system of equations and solve in MLE framework
 - $\circ~$ At a guess this problem is NP hard
 - We think this breaks the genome into small independent subproblems
 - Can you try all 2ⁿ assignments, then?
 - Or not, maybe some good heuristics?

3/29/18 11:28 AM

3/29/18 11:28 AM