Comp Bio I

Organization

- Group Projects
- 19 people, 4-5 groups (4-5 people, maybe smaller)
- pick your own partners
- Class sessions are groups working, pretty much
- Going to try to move to a class room w/movable desks
- Class is grounded in biology, but not deeply dependent
- The point is to get experience with management, tools, groupwork, etc.
 - There are opportunities for algorithm development and statistical analysis of data, coding experience, HCI experience
 - Opportunity to use tools from different areas

Homework:

- Reading to find supporting info on projects
- More detail next lecture
- Skim Daniel's paper for Thursday
- Skim an ASE paper
- Skim an RSE seq quality control paper

Projects:

- Can come up with your own need some biology, and some computer
- Can all work on same project, doesn't matter
- Most projects involve finding an existing tool and understanding it thoroughly
- Ideas:
 - Genome assembly (see website)
 - Bias in RNA Sequencing
 - #1: Bias Viz + Explore we need a convenient tool for this
 - What is state of the art?
 - What's out there for quality control in RNA datasets?
 - What's normal?
 - Can we graft something smoothly onto the open source tool to present this bias?

- Exploration is it better with modern data? How much variation Monday to Tuesday, lab to lab, etc.?
- One challenge is reducing this data to be understandable
- Other visualizations...?
- #2: Allele (version of gene) Specific Expressions (ASE)
 - You have two alleles, but you're only expressing one of them
 - You may only express Mom or Dad's version of gene
 - Not super well understood
 - Likely a gray-scale (60% Mom, 40% Dad or something)
 - Just a few differences in versions
 - You could look at the RNA sequencing and see if you have a lot more of A allele than B allele then maybe that's important
 - But what about bias?
 - What's the state of the art for detecting ASE from RNA seq?
 - Note that genome sequencing gets you one copy, not two, so one allele is in the reference for sequencing
 - It's a mosaic of individuals, not one person
 - Does bias correction help?
 - Can you quantify that?
- #3: RNA Structure and Seq Bias
- #4: TBD

Grading:

- The challenge is management (and jargon)
- Each group each week produces a report:
 - what we did last week,
 - what we will do next week,
 - long term/medium term goals,
 - $\circ~$ how did we do on last weeks goals,

- \circ $% \left({{\left({{{\left({{{}}}}} \right)}}}} \right.$
- End of quarter written and oral presentation
- Everybody will get an A that's the plan (usually works out)
 - Don't worry if everything doesn't work out perfectly

Background Bio:

- Cell DNA 23 chromosomes
- Modern sequencing tech can decode sequences of chunks of DNA very, very efficiently
 - 1% mislabeled due to glitches
 - so do it with redundancy
 - sequence the tiny chunks and you can piece it together with reasonable confidence
 - error rate can be managed via majority rules
- But sequencing is just a stepping stone
- Much of DNA is a template for making RNA
- We can extract RNA, convert to DNA, and sequence it like you would the genome
 - You can then map it back to genome to find where they came from
 - Or just treat it like usual DNA and sequence it
- All cells have the same genes, but the genes are obviously doing different things in different cells
 - $\circ~$ That's mostly down to RNA
- Genome has been annotated to show different genes (partially via sequencing RNA and mapping it back)
 - Depending on where the RNA is from you can figure out where that gene is active (nose, liver, etc.)
 - The gene is "expressed" (making RNA, protein, etc.)
 - $_{\odot}$ $\,$ More active genes may be more important $\,$

• Bias in RNA sequencing:

- Potential questions related to RNA sequencing:
 - Which genes are expressed
 - How much
 - What's same/diff between two samples (e.g. tumor v normal)

- Genes can be 'interrupted' by DNA that is irrelevant to the ultimate RNA or protein that's produced
- Remember, this is highly simplified
- From this naive model (DNA > sequence -> count) we expect uniform sampling across the starting points
- But we don't get that!
 - It's highly variable
 - The peaks are huge!
 - You can use math tricks to smooth it a bit
 - But we want to know why what's causing this?
- One of the TAs has a program that helps quite a bit (38% reduction in LLR)
- Something about the tech makes it easier to capture some fragments than others (no idea why!!)
 - We're somehow introducing bias along the way
 - (on graphs) prefer C and G to start, but A and T for second position
 - Something about the sequence effects the success of the capture
- One approach:
 - Correct for the most common 7-letter sequence starts
 - We need to look at what is to be expected for expressed genes
 - We have so much data, that 32000 free parameters isn't really a problem
- \circ Method outline
 - Sample foreground (what we get from sequencing)
 - Sample local background (actually sample the expressed genes)
 - Train Bayesian network
 - Predict bias
 - Adjust read counts
- \circ Form of the Models:
 - Directed Bayes Nets
 - Black dots mean position contributes to bias
 - +/- 20 bp from start of read

- arrow shows what positions affect other positions
- But all the datasets produce different nets!
 - And we have enough data to be confident of them
- They all get positions outside the read itself affecting the read, too
- A few questions:
 - This data is old, how does new tech affect things?
 - How much variation between data sets?
- More data means less likely to falsely infer bias, more accuracy, and more runtime (10,000 – 50,000 is a good starting point for training data)

Batch Effects

- There can be correlation between samples
- There are some very obvious patterns
- Software makes a difference here, you get very different plots
- In these graphs, these are all the same samples from the same place, so they should be highly correlated!
- Daniel's is in the top left (pretty good)
- But many don't attempt bias correction, and it doesn't look great

3/27/18 11:21 AM

3/27/18 11:21 AM