
Statistical tests

This section describes the statistical tests in the computer system:

• UP-UP-Frequencies

• UP-UP-Distance Between Points

• US-US-Overlap

• US-US-Similar Segments

• UP-US-Located Inside

• UP-US-Located Nearby

• UP-US-Located Nonuniformly Inside

• UP-F-Higher Values At Locations

• US-F-Higher Value Inside

• F-F-Similarity

• MP-MP-Similar Marks In Nearby Points

• MP-MS-Similar Marks Of Points And Segments Where Points

• UP-MS-Located In Highly Marked Segments

At present there are some deviation between the implementation and the description below.



UP - UP, frequencies

Tracks

1. Track 1: unmarked points

2. Track 2: unmarked points

Question

Where is the relative frequency of points of track 1 different from the relative frequency of
points of track 2, more than expected by chance?

Comment:

• This question is used to identify regions of the genome (or the part of it under analysis)
where the two tracks are different, taking into consideration the unequal number of
points in each track.

• ”‘more”’ can be substituted with ”‘less”’ or ”‘differently”’.

• For each region which is tagged as significant, we can identify cold spots, which are
regions where Track 1 is significantly less frequent than Track 2, and hot spots, which
are regions where Track 1 is significantly more frequent than Track 2.

Hypotheses tested

• In the local analysis, we test a null hypothesis in each bin and obtain a p-value for each
bin.

• There is a possibility of global analysis, which compares the two frequencies over the
whole area/genome.

• In each bin, we test the null hypothesis that the two tracks have the same relative fre-
quency in that bin, against the alternative that the two relative frequencies are different.
Two sided test.

• Only the total number of points in each track in the whole area of study is preserved.

• Randomisation could assume that blocks of bp’s are switched, between neighbouring
areas. This is not implemented currently.

Statistics

Our starting point is two sets of observations of positions of two genomic variables along the
genome, n1 positions of Track 1, and n2 positions of Track 2 on the same interval (chromosome
or genome) I. We consider these positions to be samples from two densities f and g on
interval I, and want to test if the densities are unequal, that is, if the two sets of variables
are positioned differently along the chromosome.



Globally, to test if two distributions are unequal, we can use global tests for distributions,
ending up with one single (global) p-value for H0 : f = g against H1 : f 6= g, for example
Kolmogorov Smirnoff.

In the local analysis, we construct subintervals (bins) and we test if the relative numbers
of points in a subinterval are different for the two tracks, and which track is under or over
represented in that subinterval (hot and cold spots).

The most simple way to do the testing of proportions is described in the following: The
interval I is subdivided into k non-overlapping bins of equal length, and in each bin we simply
count the number of hits of Track 1 and of Track 2 in that bin.

For bin i, i = 1, ..., k we obtain

p̂i = fraction of Track 1 points in bin i

and
q̂i = fraction of Track 2 points in bin i.

The underlying binomial probabilities are

pi = P (a Track 1 points is positioned in bin i)

and
qi = P (a Track 2 point is positioned in bin i).

We have to assume that the positions of points are independent.
To test if the underlying bin probabilities in bin i are diverse, we test

H0 : pi = qi against alternatives H1 : pi < qi (1)
or H1 : pi > qi

or H1 : pi 6= qi

using some more sophisticated tests. Storer and Kim (JASA 1990) perform a comparison of
seven such exact or approximate tests for the null-hypothesis above. The two most suitable
of these are implemented in the Hyperbrowser.

Test Statistics

The simplest inference procedure is to use a z-statistic (needs at least a moderate number of
points in the bin )

Z =
p̂i − q̂i√

p̂i(1−p̂i)
n1

+ q̂i(1−q̂i)
n2

or, better, with pooled standard deviation, using that pi = qi under H0, giving

Zpooled =
p̂i − q̂i√

r̂i(1−r̂i)
n1

+ r̂i(1−r̂i)
n2

where r̂i = (n1p̂i + n2q̂i)/(n1 + n2).
This latter approximate test is the ’winner’ in Storer and Kim (1990) in the case of

unequal sample sizes (n1 6= n2), which we typically will have here. The comparison of



two proportions can alternatively be thought of as a 2x2 contingency table problem, where
the z-test above will be identical to a χ2-test. But the z-test has the advantage of allowing
for one-sided alternatives while the χ2-test only allows for a two-sided alternative hypothesis.
Various continuity corrections etc. exist for the z-test above, but as none of these have proven
superior and we need something fast, these are not worth implementing.

When the number of counts is too small for the approximate test above, we resort to
Fisher’s exact test. For bin i, we have a 2x2 table

Track 1 Track 2
Inside bin i a = p̂in1 c = q̂in2

Outside bin i b = n1 − a d = n2 − c

with the number of points inside and outside bin i for each track. Fisher’s exact test tests if
the probability of falling in bin i is the same for both tracks, that is, identical to the hypotheses
above. The call in R is then fisher.test(data), where data is composed as matrix(c(a,b,c,d)
nr=2), and the p-value is computed based on the hypergeometric distribution taking all
possible configurations in the table into consideration. This call automatically calculates a
two sided p-value, but it is possible to alter this.

There are also alternative versions of this test, where row and columns sums are not fixed,
discussed f.ex. in Storer and Kim, but we conclude that these complications are not worth
implementing, since the results are rather similar, the calculations even more demanding and
Fisher’s exact test is considered conservative.

If there are so few points in a bin that not even Fisher’s exact test can be performed, no
p-value will be calculated and the Hyperbrowser returns ’NA’ for that bin.



UP - UP, distance between points

Tracks

1. Track 1: unmarked points

2. Track 2: unmarked points

Questions

Where in the genome are the points in track 1 closer to/further apart from points in track 2
than expected by chance?

Comment:

• We assume points in track 2 as fixed and want to find out whether points in track 1
are closer to or further apart from the closest point in track 2 than expected. The test
may indicate that the two tracks are independent. The test is not symmetric in the two
tracks.

• Significance is determined by means of p-values. Small p-values identify regions where
the points in track 1 are closer to or further apart from the closest point in track 2
than expected. P-values are computed as explained below, where the null hypothesis is
explained in detail.

• The p-values may be found by simulation or by an approximate calculation. It is
necessary to specify a distribution of the unmarked points in track 1.

Bins

The genome (or the areas of the genome under study) are divided into small regions, called
bins. The tests are performed in each bin.

Hypothesis tested

For each bin i we have the four different null hypotheses corresponding to each of the four
alternative preservation rules given below:
H0: Assume points in track 1 are independent of points in track 2
with the following alternative hypotheses:
H1: Points in track 1 are closer to points in track 2 than expected or
H2: Points in track 1 are further apart from points in track 2 than expected.

Let g(r) be the point in track 2 that is closest to the point r in track 1. Define the distance
d(r) as the distance between the position of r and the position of g(r) (see Figure 1). Let
r1, . . . , rn be the points in track 1 in bin i, and let µ̂ = 1

n

∑n
j=1 d(rj) be the mean distance

between points the tracks 1 and it’s nearest point in track 2. In all tests the points in track 2
will be considered as fixed, the points in track 1 as random and µ̂ will be used as test statistic.

The H0 hypothesis is rejected for each bin i if: µ̂i > cα,i or µ̂i < dα,i or cα/2,i < µ̂i < dα/2,i
corresponding to the average distance is significantly larger/smaller/different than expected.
The critical values cα,i and dα,i are found by simulation and depend on the threshold α and
the bin i.



Figure 1: Comparing positions in track 1 and 2.

We may assume four different preservation rules for the distribution of points in track 1.
These give different null distributions for µ̂ and hence different test results. In all four cases
we use Monte-Carlo simulation for obtaining samples of track 1 under the null hypothesis.
For each sample of track 1, the corresponding µ̂ is computed and the distribution of µ̂ under
the null hypothesis is obtained. How to sample the points of track 1 under each of the four
different preservation rules is described below.

Preservation rule 1: Preserve the number of points in the bin in track 1 Assume
track 1 has n points. The locations of the n points are drawn independently and uniformly
in the bin.

Preservation rule 2: Preserve the number of points and also the interpoint
distances in the bin in track 1 The points in track 1 are sampled by permuting the
interpoint distances of the original track 1.

Preservation rule 3: Preserve the distribution of the interpoint distances in
the bin in track 1 The leftmost point might be drawn by drawing a distance d from the
distribution D of the interpoint distances, and then draw the distance from the bin start to
the first point from the uniform distribution U[0,d]. The next points in track 1are sampled
one by one from left to right by drawing the interpoint distances from the distribution D. We
stop drawing new points when the next point would have been placed outside the bin.

If a control track is available the four sampling procedure above might be extended as
indicated in the note ”Sampling MC-locations from the candidate track”.

Approximation under preservation rule 1

For preservation rule 1 we may, alternatively, use an approximation for the null distribution
of µ̂ as described below.

Assume that the number of points in the bin in track 1 is preserved. Let
D1, . . . , Dn be independently, identically distributed random variables for the distances of
the points in track 1, d(r1), . . . , d(rn).

The locations for the n points in track 1 are independent. Let f be the prior on possible
locations for one point. In the special case that f is uniform, we observe that the distri-
bution of each of D1, . . . , Dn is a mixture of non-overlapping uniform distributions i.e. the



distribution fD is a piecewise constant distribution (Figure 2):

fD(d) =
m∑
i=1

ci · U [bi−1, bi],

where m, ai and bi, i = 1, . . .m, are as indicated in Figure 2, b0 = 0 and ci is the fraction of
the bin that is covered by ai segments. b1 is the shortest half-distance, b2 the next shortest
etc. and ai = bi − bi−1.

Figure 2: Distribution of the distances of the points in track 1 for a bin with three points in
track 2 assuming a uniform prior.

When the prior on possible locations is not a uniform, the distribution fD for the distance
to the closest point in track 2 is obtained as follows: Let m be the largest possible distance
and define a function g : {0, . . .m} → R by g(i) =

∑
location l with d(l)=i f(l). Then fD(i) =

g(i)Pm
j=0 g(j)

. Also in this case fD is a piecewise constant distribution, but each interval with

constant values is very short. To obtain longer intervals we might approximate fD(i) with
another piecewise constant distribution, f.ex. by repeatedly merging some neighbour intervals
with quite similar values into a new interval with constant value equal to the mean of the
original values.

The null distribution for µ, the mean distance for the points in track 1, may be approxi-
mated by a piecewise constant density. The density may be found by adding one and one of
the terms in the sum (this should be done in such a way that as few additions as possible are
performed). When the number of points in track 1 is large, the null distribution for µ might
be approximated by a normal distribution. Small p-values are obtained when µ̂ computed
from the data occurs in the left/right/left or right tail of the null-distribution, correspond-
ing to the tests of whether the average distance is significantly larger/smaller/different than
expected.



US - US, overlap

Tracks

1. Track 1: unmarked segments

2. Track 2: unmarked segments

Questions

Where in the genome do the segments of track 1 intersect the segments of track 2, more than
expected by chance?

Comment:

• This question is used to identify regions of the genome (or the part of it under analysis)
where segments in the two tracks overlap more than expected.

• The global analysis answers the question ”‘Do the segments of track 1 overlap with the
segments of track 2, more than expected by chance?”’

• ”‘More”’ can be changed into ”‘less”’ or ”‘differently”’.

• The p-values are computed exactly, asymptotically or found by simulation. This de-
pends on the null hypothesis chosen. Simulation takes more computing time. It might
be advisable to start with the hypothesis which preserve less, and require no simulation,
to get a first impression.

• Not all the options described in this note are currently implemented.

Null Hypothesis and test statistics

We consider one bin. Consider the segments in track 1 in that bin. The elements that
characterise this track are the segments, which are in a certain number l1, of certain lengths
each, and positioned in certain places of the bin. Between segments, there are also segments,
here called intersegments. They also have a cardinality (which is one the three l1−1, l1, l1 +1)
and a length and position. There are several levels of preservation of this structure, which
are used to describe various null hypothesis: (i) Preserve all, exactly as is in the data; (ii)
preserve the segments and the intervals between segments (inter-segments), in number and
length but not their positions; (iii) preserve only the segments, in number and length, but not
their positions; (iv) preserve the number of segments but not their length, nor position; (v)
preserve only the number of base pairs in segments, not their position nor number, hence not
the segments themselves. Because two different preservation rules can be decided for each of
the two tracks, the test will often be not symmetric.

A statistics is defined that measures the overlap of the segments. There are several
possibilities. One could use the segments as units, and just count how many segments in
track 1 have an overlap with segments in track 2. In this case it makes no difference if the
overlap is large in terms of basepairs (bp’s), or just small. Instead, we will measure how many
basepairs the overlap measures, and compute the probability of the observed overlap under
the null hypothesis. Here is a precise mathematical definition of the statistics



Let i = 1, 2, ..., n be indicating the n bp in the bin (or chromosome or whole genome). Let

Xi = 1 if bp i is in a segment of track 1, (2)
Xi = 0 otherwise. (3)

And similarly for track 2:

Yi = 1, if bp i is in a segment of track 2, (4)
Xi = 0 otherwise. (5)

Then

T =
n∑
i=1

XiYi

is the total number of bp’s (in the bin) which are within segments of both tracks. T/n is then
the percentage of bp’s covered by segments in both tracks. Sometimes it is more interesting to
compute the percentage of bp’s in the segments of track 1 which are covered also by segments
in track 2. This is then

T∑n
i=1Xi

.

All these are possible test statistics. For some preservation rules and randomisations, the
corresponding p-value can be computed exactly.

Null Hypothesis 1, very unequal preservation in the two tracks

The null hypothesis is given by:

1. Preserve all in track 2: the observed data.

2. In track 1, preserve only the expected number of bp which fall in a segment. That is
the expected number of bp must be θ1 = 1

n

∑n
i=1Xi

3. In track 1, each bp is either inside or outside a segment with probability θ1 independently
of each others.

Note that this null hypothesis does not preserve anything of the segment stricture of track 1,
except for the expected number of bp’s covered by segments. It is possible to make an exact
calculation for this simple null hypothesis:

P (T > k) = P (
n∑
i=1

XiYi > k) = P (
∑

is.t.Yi=1

Xi > k).

Assume that b2 =
∑n

i=1 Yi is the number of bp in track 2 covered by segments. The last sum is
over b2 terms. Under the null hypothesis point 3 above, the Xi’s are iid, with P (Xi = 1) = θ1.
So their sum is distributed according to a Binomial(b2,θ1). Hence

P (T > k) =
b2∑

h=k+1

(
b2
h

)
θh1 (1− θ1)b2−h

is the exact p-value.



It is possible to make an asymptotic approximation, to avoid computing these sums. Here
we use that the binomial is approximated by a normal. More precisely, a Binomial(b2,θ1)
random variable has approximately a normal distribution

N(b2θ1, b2θ1(1− θ1)).

Hence
P (T > k) ∼ 1− Φ(

k − b2 θ1√
b2 θ1(1− θ1))

asymptotically. We can use this approximation when

b2θ1 > 5, and b2(1− θ1) > 5.

Null Hypothesis 2, more realistic

The null hypothesis is given by:

1. Preserve all in track 2: the observed data.

2. In track 1, preserve the segments but not their positions, nor the intersegments.

3. In track 1, each segment is positioned at random, independently of each others, but
with no overlap. This is a random permutation.

Under this model, the statistics

T =
n∑
i=1

XiYi

has a distribution cannot be computed exactly. [To explain why, first observe that

T =
n∑
i=1

XiYi =
∑

i, : Yi=1

Xi,

as track 2 is fixed. The random variables Xi are not independent anymore. For example, say
that Y7 = Y8 = 1: if X7 = 1, then it means bp 7 is in a segment of track 1. As this segment will
probably continue over bp 7, it is very likely that X8 = 1, too. Hence dependence.] We can
do asymptotics: It is possible to use a central limit theorem for sums of dependent variables.
Under the assumption that the dependence is not too strong, then the limit is still normal,
but the asymptotic variance is larger and more complicated to estimate. More precisely, if
the Xi’s is a mixing random process along the genome, then this is enough. Mixing means,
that random variables far apart from one another are nearly independent. A formulation of
the central limit theorem under strong mixing is given in (Billingsley 1995, Theorem 27.4).
The asymptotic variance of T is

σ2 = E(X2
1 ) + 2

∞∑
k=1

E(X1X1+k).

One could now estimate from the data in track 1 the expectation E(X1X1+k) as

1
b1

∑
i : Yi=1, and Yi+k=1

XiXi+k



for several values of k, until this becomes small and can be ignored in the sum in σ2. This
is computationally intense, but feasible. There is also the possibility to assume a parametric
model for E(X1X1+k), as a function that decays geometrically fast to zero in k2. In this case
one needs to estimate the parameters of this decay function from the data in track 1.

There remains the possibility to estimate P (T > k) under the null hypothesis by Monte
Carlo. For this purpose, we need to produce random permutation of the segments. There
are several algorithms to do this. We use this one: Preserving the lengths of the segments,
means that we know the total length of the intersegments too. Then the algorithm starts with
splitting the total intersegment lengths in l1 + 1 parts (or l1, that depends if the bin starts
with a segment or with an intersegment in the data). We then take first a segment, then
an intersegment, then a segment etc. until all are used. This gives a random permutation.
Notice that this algorithm can easily be used also to sample from the null hypothesis that
preserves also all intersegment lengths, as we would then simply sample from the bag of such
intersegments, instead than generating a random partition of the total intersegment length.

Null Hypothesis 3, random permutations of segments and intersegments

The null hypothesis is given by:

1. Preserve all in track 2: the observed data.

2. In track 1, preserve the segments but not their positions, and the intersegments, but
not their positions,

3. In track 1, each segment and intersegment is positioned at random, independently of
each others, but with no overlap. A segment is followed by an intersegment. This is a
random permutation.

This can be done by Monte Carlo, as explained in the simpler case when the intersegments
are not preserved.

Null Hypothesis 4, for both tracks, random permutations of segments and inter-
segments

The null hypothesis is given by:

1. In track 1, preserve the segments but not their positions, and the intersegments, but
not their positions,

2. In track 1, each segment and intersegment is positioned at random, independently of
each others, but with no overlap. A segment is followed by an intersegment. This is a
random permutation.

3. In track 2, assume the same as in track 1.

This can be done by Monte Carlo, as in the previous case, by sampling both tracks before
computing the statistics T .



Null Hypothesis 5, very unrealistic in both tracks

The null hypothesis is given by:

1. In track 1, preserve only the expected number of bp which fall in a segment. That is
the expected number of bp must be θ1 = 1

n

∑n
i=1Xi

2. In track 1, each bp is either in or outside a segment with probability θ1 independently
of each others.

3. In track 2, assume the same as in track 1.

This case can be done exactly, as we suggested in the analogous case when one of the
track is fixed and in the other we just preserve the expected number of bp’s within segments:

P (T > k) = P (
n∑
i=1

XiYi > k) = P (
n∑
i=1

Gi > k),

where Gi are iid, equal to 1 with probability θ1 · θ2, so that T is Binomial(n,θ1 · θ2), with n
number of bp’s.

A different test statistics

Assume now we just count the number of segments which overlap, ignoring how large the
overlap is in terms of bp’s. In each given bin, we count how many segments of track 1 have a
non-empty intersection with a segment (or many segments) of track 2. Let Zj = 1 if segment
j in track 1 has non-empty intersection with segment(s) of track 2, Zj = 0 otherwise. Then

1
l1

l1∑
j=1

Zj

is the percentage of segments in track 1 intersecting segments in track 2. Under various null
hypothesis, it is possible to compute exact and asymptotic distributions for this statistics.
Monte Carlo is also possible. The above statistics is natural if the segments of track 2 are
preserved. It is possible to invert the role of the two tracks, and get a similar statistics.



US - US, similar segments

Tracks

1. Track 1: unmarked segments

2. Track 2: unmarked segments

Question

Where in the genome are the segments of track 1 similar to the segments of track 2 with
more/less/different frequency than expected by chance?

Comment:

• This question is used to identify regions of the genome (or the part of it under analysis)
where segments in the two tracks are very similar, i.e. almost overlapping. Similar is
defined as follows: Let S1 and S2 be two segments in track 1 and track 2 respectively
that overlap. Define S3 as the union of S1 and S2 and l(S) as the length of a segment
S. That S1 and S2 are similar is defined as l(S1)/l(S3) > β and l(S2)/l(S3) > β for a
constant β. The test is then based on the ratio of the segments in the bin that is very
similar to a segment in the other track. The test is symmetric in the two tracks.

• Significance is determined by means of p-values. Small p-values identify regions where
the segments in the two tracks overlap more/less/different than expected. P-values are
computed as explained below, where the null hypothesis is explained in detail.

• The p-values are found by simulation. It is necessary to specify a distribution of the
unmarked segments. We specify the following distribution. The user specifies bins
or if used globally two endpoints. Then we assume the length of all segments and
all intervals between segments including interval between first and last segment and
corresponding end point as fixed. New realizations are simulated by permuting the
order of the segments and the order of the intervals between segments in the two tracks.

Bins

The genome (or the areas of the genome under study) are divided into small regions, called
bins. The tests are performed in each bin.

Hypothesis tested

Question, similar segments

• Hypothesis: The frequency of similar segments is not larger/smaller/different than ex-
pected.

Note that this test depends on the threshold β defined above.

• Observator for bin i: Ki = number of segments that are similar with segment in the
other track in bin i/ number of segments in track 1 and 2



• The p-value of the test is found from the distribution of Ki depending on the hypothesis
and the distribution for the segments under the null hypothesis.



UP - US, located inside

Tracks

• Track 1: Unmarked points

• Track 2: Unmarked segments

Questions

Where in the genome is there more points of track 1 inside the segments of track 2 than
expected by chance?

Comments:

• This question is used to identify regions of the genome (or the part of it under analysis)
where points are over-represented inside the segments and where this over-representation
is so strong that it would seldom happen by chance. Such over-representation would be
a strong indication that points and segments do not occur independent of each other.

• In the analysis, the genome is divided into bins, and the tests are carried out for each
bin

• ”more” may be changed into ”less” or ”either more or less”.

Hypothesis tested

The model valid under the null hypothesis is given by:

1. a preservation rule for each track,

2. a probability law on how the non-preserved elements are randomized. This rule im-
plicitly imply independence of the positioning of the points and segments in the two
tracks.

Consider the points in track 1 in one bin. A challenge in formulating models is that the
structure of the interpoint distances may be crucial. If points (under the null hypothesis) are
randomly distributed, or more precisely, conform to a Poisson process, then there is a simple
solution to the testing problem (see Null hypothesis 1 below). However, there will probably
often be more structure in the sequence of points: the points may occur more regularly than
in a Poisson process, but probably more importantly, they may form clusters of points. Such
clustering is very difficult to model. Thus, in the solutions presented below we either make
the strong assumption of random positioning of the points (Null hypothesis 1) or we preserve
the point positions in track 1 and base the tests on specific assumptions regarding the random
segmental structure of track 2.

Let N be the total number of points in track 1 in the bin under consideration, and let T
be the number falling within the segments defined by track 2.



Null Hypothesis 1, points in track 1 are randomly distributed

The model valid under the null hypothesis is:

1. The number of points in track 1 is preserved and the points are assumed uniformly
distributed (typically arising from a simple Poisson process).

2. A fraction of the bp in track 2 equal to the observed one is included in segments.

Note that assumption 1 above is a very strong assumption on lack of structure for the
points. The gain from this strong assumption is that we get a simple test and only need to
make a very weak assumption for track 2.

The p-value is P (T ≥ k) where k is the observed value of T in the data. (If the question
would be ”less”, we would use ≤; if ”different” we would multiply times two.)

Let θ be the fraction of bp in track 2 that belongs to segments. Then

P (T ≥ k) =
N∑
h=k

(
N
h

)
θh(1− θ)N−h

gives the exact p-value.
It is possible to make an asymptotic approximation, to avoid computing these sums. Here

we use that the binomial is approximated by a normal. More precisely, a Binomial(n,θ)
random variable has approximately a normal distribution

N(nθ, nθ(1− θ)).

Hence we may approximate by

P (T ≥ k) ∼ 1− Φ(
k − 0.5−N θ√
N θ(1− θ)

)

asymptotically. The 0.5 is a continuity correction, making the approximation better.

Null Hypothesis 2

The model under the null hypothesis is given by:

1. Track 1 is preserved as observed

2. In track 2, we preserve the segment lengths, but not the segment ordering or positions.

The test statistics remain the same as above; the number T among the N points that falls
within a segment. However, now T has a distribution under the null hypothesis which we are
not able to find exactly.

We thus compute p-values using Monte Carlo simulations. We do this by generating many
new configurations of track 2 (in the bin we are working on). Each repetition has the same
segments as the data (same collection of segment lengths), but now with random ordering of
the segments within the bin and with random distances between the segments.

Preserving the lengths of the segments, means that we know the total length of the inter-
segments too. If there are K segments, the algorithm starts by splitting the total intersegment
lengths L into K parts (intersegments) by drawing K-1 points on [0, L]. A realization of track



2 is then obtained in a two step process. The reason for the two steps is that the borders of the
bins represent a challenge in the implementation: using the trivial solutions, points in track 1
close to the segment border will either have larger or smaller probability of being included in
a segment. Therefor, in the first step we make a sequence: the first intersegment, followed by
a randomly drawn segment, then the next intersegment, the next randomly drawn segment
and so on. Then we connect the borders of track 2 (if both borders are covered by segments,
we still regard them as two segments). Finally, we randomly draw a starting position on the
circle and use this as the starting point for the bin.



UP - US, distance between nearby points and segments

Tracks

1. Track 1: unmarked points

2. Track 2: unmarked segments

Question

Where in the genome are the points in track 1 closer to/further apart from the segments in
track 2 than expected by chance?

Comment:

• The test is valid for all combinations of the alternative combinations of preservation and
randomization of points in track 1 and segments in track 2. The test is not symmetric
in the two tracks.

• Significance is determined by means of p-values. Small p-values identify regions where
the points in track 1 are closer to or further apart from the closest segment in track 2
than expected. P-values are computed as explained below, where the null hypothesis is
explained in detail.

• The p-values are found by simulation.

Bins

The genome (or the areas of the genome under study) are divided into small regions, called
bins. The tests are performed in each bin.

Hypothesis tested

Hypothesis tested

For each bin i we have the null hypothesis:
H0: The points in track 1 are independent of the segments in track 2.
and the following alternative hypotheses:
H1: Points in track 1 are closer to the segments in track 2 than expected or
H2: Points in track 1 are further apart from the segments in track 2 than expected.

Define the distance di as the smallest distance between point i in track 1 and a segment
in track 2 for i = 1, 2, · · · , n. If the point i is inside a segment, then di = 0. We use the
test statistics X = 1

n

∑n
i=1 di. The distribution for this test statistics is not know and it is

necessary with MC simulation in order to decide whether to reject the hypothesis.



UP - US, uniform positioning of points within segments

Tracks

1. Track 1: unmarked points

2. Track 2: unmarked segments

Questions

Q2-1 Where in the genome are the points in track 1 positioned more towards the borders of
the segments in track 2 than expected by chance?

Q2-2 Where in the genome are the points in track 1 positioned more towards the middle of
the segments in track 2 than expected by chance?

Q2-3 Where in the genome are the points in track 1 positioned more towards the left part of
the segments in track 2 than expected by chance?

Q2-4 Where in the genome are the points in track 1 positioned more towards the right part
of the segments in track 2 than expected by chance?

Q2-5 Where in the genome are the points in track 1 positioned more non-uniformly inside
the segments in track 2 than expected by chance?

Comments:

• We assume that segments are fixed and regard points as random and independent.

• Significance is determined by means of p-values. For Q2-1, small p-values identify
regions where the points in track 1 are closer to the borders of the segments in track 2
than expected. Similar for Q2-2, Q2-3, Q2-4 and Q2-5.

Bins

The genome (or the areas of the genome under study) are divided into small regions, called
bins. The tests are performed in each bin.

Hypothesis tested

H0: Points have a uniform distribution within segments.

Remarks

• If points are uniformly and independently distributed over segments, this will also be
the case even if we rescale all segments to the same length.

• The tests described here are restricted to situations where such rescaling appears rea-
sonable. This may not always be the case; biologists may for instance be interested in
the distribution of the length in absolute terms from the start of the segments. This
will, however, often be an estimation problem rather than a testing problem.



• If points are uniformly distributed, they are symmetrically distributed around the
mean/median value. This may be used to construct tests.

Alternative hypotheses

H1 : Points tend to be positioned towards the borders of the segments.

H2 : Points tend to be positioned towards the middle of the segments.

H3 : Points tend to be positioned towards the left part of the segments.

H4 : Points tend to be positioned towards the right part of the segments.

H5 : Points are unequally distributed within segments.

Testing against H1, H2, H3 and H4

When testing against H1 and H2, let di, 1 = 1, . . . n, be the relative position, but now scaled
such that the value is -1 at both borders and 1 in the middle of the segment (and thus 0
halfway between the middle and the border).

When testing against H3 and H4, let di, 1 = 1 . . . n, be the relative position of points
within segments scaled such that the value is -1 at the left end and 1 at the right end.

To test the first four hypotheses above, we may use the Wilcoxon sign-rank test. For n
larger than 20-30, we may also use the t-test, which is markedly less time-consuming.

The Wilcoxon test is done in the following way: Rank the di without regard to sign;
with 1 assigned to the observation closest to 0 (any zeros are neglected). Then compute
W+ and W− as the sums of the value of the ranks of the originally positive and negative
observations, respectively. Significance levels are based on the fact that if H0 is true, then
there are 2n equally likely ways for the n ranks to receive signs. As test statistic, we use
W = MIN(W−,W+). For small samples (N ≤ 30), the critical regions must be found from
some table. For N > 30, the test statistic W approaches a normal distribution with a mean
of n(n+ 1)/4 and a variance of n(n+ 1)(2n+ 1)/24. However, to increase speed, we should
consider using the t-test when n > 20. The t-test to use is the standard one-sample test.

Testing H5

To test against the alternative H5, one may use the Kolmogorov test.

Remark

The alternatives are formulated such that a one-sided test may appear most appropriate,
except for H5. This is hardly an important point, however.



UP - F, value in points

Tracks

1. Track 1: unmarked points

2. Track 2: function

Question

In the unmarked points of track 1, is the average value of the function in track 2 smaller/different/larger
than expected by chance?

Comment:

• The test is analytic and assumes that the function is white noise. The assumption is
also satisfied if the distance between points are so large that there is the correlation
between neighbouring points is small.

• We assume the function in track 2 is fixed and that the points in track 1 are independent
of the function values in track 2.

• Significance is determined by means of p-values. Small p-values identify bins where the
function values are smaller/different/larger than expected in the points of track 1.

• If the points in track 1 depend on other tracks, it is possible to condition the test on an
intensity track using this information.

Bins

The genome (or the areas of the genome under study) are divided into small regions, called
bins. The tests are performed in each bin.

Hypothesis tested

For each bin i we have one null hypothesis
H0: In the unmarked points of track 1, the average value of the function in track 2 is the
same as the average function value.

There are three alternative hypotheses:
H1: In the unmarked points of track 1, the average value of the function in track 2 is smaller
than the average function value.
or
H2: In the unmarked points of track 1, the average value of the function in track 2 is different
than the average function value.
or
H3: In the unmarked points of track 1, the average value of the function in track 2 is larger
than the average function value.



Statistics and rejection of the null hypothesis

Let n be the number of base pairs in the bin, and let Yi, i = 1, 2, · · · , n, be the function values
in the bin. We assume Yi ∼ N(µ, σ2). Define the average Ȳ = 1

n

∑n
i=1 Yi. Also, define Gi = 1

if there is a point in track 1 and Gi = 0 otherwise. Define X = 1
m

∑n
i=0GiYi where m is the

number of unmarked points in track 1. Notice that under the null hypothesis EX = EȲ and

X − Ȳ =
n∑
i=1

(
Gi
m
− 1
n

)Yi.

Define the constant K from the following expression

V ar(X − Ȳ ) =
n∑
i=1

(
Gi
m
− 1
n

)2σ2 = (Kσ)2

and the sample variance

S2 =
1

n− 1

n∑
i=1

(Yi − Ȳ )2.

Under the null hypothesis S2(n−1)/σ2 is χ2-distributed with n−1 degrees of freedom. Then
the variable

T = (X − Ȳ )/SK

is t-distributed with n − 1 degrees of freedom. We find the p-value from this distribution
depending on the alternative hypothesis.

The test described above is very similar to a standard two sample t-test and the tests
will probably give almost identical result. The test described above may be better in reusing
previous calculated data and hence reduce CPU time.

Alternative assumption using an intensity track

Assume both the position of the points in track 1 and the function values in track 2 depend on
a third track, denoted track 3. We then want to find out if the average value of the function
in the points of track 1 is different from the average function values when we also take track
3 into consideration. Track 3 is used for making an intensity track W that gives a weight to
each base pair.

For each bin i we have one null hypotheses
H0: In the unmarked points of track 1, the average value of the function in track 2 is the
same as the weighted average function value.

There are three alternative hypotheses:
H1: In the unmarked points of track 1, the average value of the function in track 2 is smaller
than the weighted average function value.
or
H2: In the unmarked points of track 1, the average value of the function in track 2 is different
than the weighted average function value.
or
H3: In the unmarked points of track 1, the average value of the function in track 2 is larger



than the weighted average function value.

We define an intensity track Wi, i = 1, 2, · · · , n, for the points in track 1 conditioned
on track 3. Wi is the probability for a point in track 1, conditioned on the value in track
3. We assume that Wi takes k discrete values. Let q(i) be a function that from base pair
number i finds the index 1, 2, · · · , k to the discrete value of Wi. Then Wi = Wj if and only if
q(i) = q(j). Then we assume Yi ∼ N(µq(i), σ2) where the expectation depends on Wi. Define
the variable

Z =
1∑n

i=1Wi

n∑
i=1

WiYi.

Notice that EX = EZ and

X − Z =
n∑
i=1

(
Gi
n
− Wi∑n

j=0Wj
)Yi.

Define the constant K from the following expression

V ar(X − Z) =
n∑
i=1

(
Gi
n
− Wi∑n

j=0Wj
)2σ2 = (Kσ)2.

Furthermore, define Ȳj as the average of Yi in the base pair where q(i) = j and

S2 =
1

n− k

n∑
i=1

(Yi − Ȳq(i))2.

Under the the null hypothesis S2(n− k)/σ2 is χ2-distributed with n− k degrees of freedom.
Then the variable

T = (X − Z)/SK

is t-distributed with n − k degrees of freedom. We find the p-value from this distribution
depending on the alternative hypothesis.

There is a similar standard two sample t-test and the tests will probably give almost
identical result. The test described above may be better in reusing previous calculated data
and hence reduce CPU time.

A slightly better approach is to use a control track. Instead of assuming Wi takes k discrete
values and the definition of q(i) above, we may use a control track Qi taking categorical values.
We then assume Yi ∼ N(µQi , σ

2) where the expectation depends on Qi which is more general
than when we use intensity as described above. The only change using a control track instead
of an intensity track is the definition of Ȳj and S2. Define Ȳj as the average of Yi in the base
pair where Qi = j and

S2 =
1

n− k

n∑
i=1

(Yi − ȲQi)
2.



US - F, value in segment

Tracks

1. Track 1: unmarked segment

2. Track 2: function

Question

In the unmarked segments of track 1, is the average value of the function in track 2 smaller/different/larger
than expected by chance?

Comment:

• We assume the function in track 2 is fixed and that the segments in track 1 are inde-
pendent of the function values in track 2 under the null hypothesis. The segments in
track 1 are preserved and randomized with different algorithms in order to determine
whether to reject the hypothesis.

• Significance is determined by means of p-values. Small p-values identify bins where the
function values are smaller/different/larger than expected in the segments of track 1.

• The p-values are found by simulation.

Bins

The genome (or the areas of the genome under study) are divided into small regions, called
bins. The tests are performed in each bin.

Hypothesis tested

For each bin i we have one null hypothesis
H0: In the unmarked segments of track 1, the average value of the function in track 2 is the
same as the average function value in the bin.

There are three alternative hypotheses:
H1: In the unmarked segments of track 1, the average value of the function in track 2 is
smaller than the average function value in the bin.
or
H2: In the unmarked segments of track 1, the average value of the function in track 2 is
different than the average function value in the bin.
or
H3: In the unmarked segments of track 1, the average value of the function in track 2 is larger
than the average function value in the bin.



Statistics and rejection of the null hypothesis

Let X be the average function value in track 2 evaluated in the base pairs inside segments
of track 1. The distribution for this test statistics is not know for any of the permutation
and randomization of the segments of track 1. It is necessary with MC simulation in order to
decide whether to reject the hypothesis.



F - F, similarity (correlation)

Tracks

• Track 1: Function

• Track 2: Function

Question

Where are the two functions similar/associated/correlated ?

Comment:

• Correlation is measured in different ways.

• The question is answered in the setting of statistical hypothesis testing. We perform
the test inside a series of bins of the genome.

• Significance is determined by means of a p-value calculated for each subinterval. Small
p-values identify regions with significant results, where the tracks differ.

• The p-values are computed as explained below, where the null hypotheses are explained
in detail.

Refined questions

Alternative A1

• Where are the two functions associated?

Alternative A2

• Where are the two functions positively associated?

Alternative A3

• Where are the two functions negatively associated?

Bins

The genome (or the areas of the genome under study) are divided into small regions, called
bins. The tests are performed in each bin.

Hypotheses tested

• A1 H0: No association against Ha: Association

• A2 H0: No association against Ha: Positive association

• A3 H0: No association against Ha: Negative association



Tests and test statistics

Similarity of the two functions can be studied in various ways. We focus here on simple tests
for correlation like associations between the two series.

Inside a bin, assume we have n observation pairs (xi, yi), where xi is a data point of track
1 in position i and yi is a data point of track 2 in position i. We wish to test if certain values
of x and y have a tendency to occur together, for instance that both track 1 and track 2 tend
to have high values or both low values in the same (intervals of) base pairs, which would be
a positive association.

The n observation pairs could be the function values in all base pairs inside the bin. But
it is likely that each function exhibits (strong, positive) autocorrelation, that is, dependency
between function values in neighbouring sites inside each track, f.ex. between xi and xj . This
will result in too small p-values if ignored, because the following calculations are based on
assumptions of n independent observation pairs. To reduce autocorrelation, we divide each
bin into n sub bins and use a representative from each sub bin as the n data points for each
track in each bin. Such a representative could be the mean, the median or the function value
in the midpoint of the sub bin.

Based on these n pairs of observations, we test for linear or non linear but monotone
relationships between the two tracks inside each bin. The number of sub bins n should
typically be around 20-30. Non smooth functions require more sub bins.

• Option 1: Pearson correlation (Assuming binormality and a linear relationship
between x and y.)

Test statistic

Tn =
rxy
√
n− 2√

1− r2xy

where rxy is the empirical correlation coefficient∑
xiyi − nx̄ȳ

(n− 1)sxsy
.

Under the null hypothesis of no correlation, Tn has a t(n− 2) distribution.

• Option 2: Spearman correlation (No assumption on normality, no linear assump-
tion, measures any monotone relationship between x and y.)

Substitute x1, x2, ..., xn with their ranks, and the same with y1, y2, ..., yn. In the case
of ties (equal values for two or more measurements), give the same rank to all of the
involved values, which should be the mean of the ranks that they otherwise would have
had. Calculate rxy above with the observations substituted by their ranks.

If n ≥ 20, we use the test statistic Tn and the t(n − 2) distribution above to find a
p-value. If n < 20, precalculated tables for p-values are available.

If no ties are present, the Spearman rxy can be very easily calculated as

rxy = 1− 6
∑
d2
i

n(n2 − 1)
,



where di = rank of xi - rank of yi.

• Option 3: Kendall’s tau (Same assumptions as for Spearman, but different measure
of association.)

Among all n(n− 1)/2 possible pairwise comparisons {i, j}, let

C = # pairs where xj − xi and yj − yi have the same sign (Concordant)

D = # pairs where xj − xi and yj − yi have the opposite sign (Discordant)

and

τ =
C −D

n(n− 1)/2
,

which is Kendall’s tau. In the case of ties (xi = xj , yi = yj , or both), τ is instead
defined as

τ =
C −D√

[
(
n
2

)
− nx][

(
n
2

)
− ny]

.

Here nx and ny are the number of ties involving x and y, respectively.

Test statistic is in both cases

Zn =
3τ
√
n(n− 1)√

2(2n+ 5)

which is N(0, 1) when n is large. Should be OK for for n ≥ 20. Tabulated p-values are
available for n up to 50, but only in the situation of no ties.



MP - MP, similar marks in nearby points

Tracks

1. Track 1: marked points

2. Track 2: marked points

We assume that either the marks in both tracks are categorical or the marks in both tracks
are continuous, discrete, ordered categorical and not ordered categorical.

Question

Is the mark of a points in track 1 and the mark of its nearest neighbour point in track 2
independent?

Comment:

• We assume the position of the points in track 1 and the track 2 are fixed. We permutate
only the marks of the points in one or both tracks.

• We identify the point in tracks 2 that is the nearest to each point in track 1. There are
several different options. Nearest in the direction of lower base pair number, in both
directions and in the direction of higher base pair number. It is necessary with a rule
of preference if there are points at same distance in both directions. We may neglect
neighbours that are further apart than a maximum distance. Some point in track 2 may
be the nearest neighbour to several points in track 1 and some points may not be the
nearest neighbour to any points in track 1. We assume that this occurs so seldom that
it does not dominate the statistics.

• Significance is determined by means of p-values. Small p-values identify bins where the
marks of the points in track 1 are not independent of the marks of the points of track
2.

• The p-values are found by an analytic calculation or MC simulation.

Bins

The genome (or the areas of the genome under study) are divided into small regions, called
bins. The tests are performed in each bin.

Hypothesis tested

For each bin i we have the null hypothesis
H0: The mark of a points in track 1 and the mark of its nearest point in track 2 are indepen-
dent.

The alternative hypothesis is:
H1: The marks of a points in track 1 depends the mark of its nearest point in track 2.



Statistics and rejection of the null hypothesis, categorical variables

In this section we assume that the marks of both tracks are categorical variables. Let r be
the number of categories for marks of points in track 1 and let c be the number of categories
for marks of points in track 2. Furthermore, let Oi,j be the number of observations of points
from track 1 with mark equal i where its nearest neighbour in track 2 has mark j. In this
test we consider these pairs of marks and neglect that some points in track 2 may be part of
several pairs and that some points in both tracks may be part of no pairs. The table with
the Oi,j values is a contingency table with r rows and c columns.

Let N be the total number of pairs, i.e. N =
∑r

i=1

∑c
j=1Oi,j . If the marks of the pairs

are independent, we expect Oi,j ≈ Ei,j where

Ei,j =
1
N

r∑
k=1

Ok,j

c∑
k=1

Oi,k.

Let

X =
r∑
i=1

c∑
j=1

(Oi,j − Ei,j)2

Ei,j
.

Under the null hypothesis X is χ2-distributed with (r−1)(c−1) degrees of freedom. This
is an approximation that is considered accurate if all Oi,j > 10. (ref. Wikipedia/Pearson’s
chi-square test). We find the p-value from this distribution. The combinations of i and j that
give the largest contribution to the double sum in X, are the cells where the deviation from
the independence assumption is largest.

Statistics and rejection of the null hypothesis, continuous or discrete vari-
ables

In this section we assume that the marks of both points and segments are continuous or
discrete variables. Let Xi be the mark of a point in track 1 and Yi the mark of its nearest
neighbour in track 2, i = 1, 2, · · · , n. We use the following test statistic:

The sample correlation

rx,y =
∑n

i=1(Xi − X̄i)(Yi − Ȳ )
(n− 1)sxsy

=
∑n

i=1XiYi − nX̄Ȳ
(n− 1)sxsy

,

where X̄ = 1
n

∑n
i=1Xi, Ȳ = 1

n

∑n
i=1 Yi, s

2
x = 1

n−1

∑n
i=1(Xi−X̄)2, and s2y = 1

n−1

∑n
i=1(Yi−Ȳ )2.

Spearman’s rank correlation is defined as the sample correlation except that it uses the
ranks xi and yi instead of the original data Xi and Yi.

Kendall τ rank correlation is then defined as

τ =
2(nc − nd)
n(n− 1)

.

where nc is the number of concordant pairs i.e. the number of pairs where (Xi − Xj)(Yi −
Yj) > 0 and nd is the number of of disconcordant pairs i.e. the number of pairs where
(Xi−Xj)(Yi−Yj) < 0. The pairs where both Xi = Xj and Yi = Yj are both condordant and
disconcordant, but are in fact not critical for the definition of Kendall τ.

The distribution for the sample correlation, Spearman’s rank correlation and Kendall τ
are known and we may find the p-value from these distributions.



In addition, we may use the test statistics

Z1 =
n∑
i=1

(Xi − Yi)2,

and

Z2 =
n∑
i=1

|Xi − Yi|

The distribution for these test statistics are not known and it is necessary with MC
simulations in order to decide whether to reject the hypothesis.



MP - MS, similar marks of points and segments where points
are inside segments.

Tracks

1. Track 1: marked points

2. Track 2: marked segments

We assume that either the marks in both tracks are categorical or the marks in both tracks
are continuous, discrete, ordered categorical and not ordered categorical.

Question

Are the marks of the points in track 1 that are inside segments of track 2 independent?

Comment:

• We assume the position of the points in track 1 and the entire track 2 are fixed. We
permutate only the marks of the points in track 1.

• Significance is determined by means of p-values. Small p-values identify bins where the
marks of the points in track 1 are not independent of the marks of the segments of track
2.

• The p-values are found by an analytic calculation or MC simulation.

Bins

The genome (or the areas of the genome under study) are divided into small regions, called
bins. The tests are performed in each bin.

Hypothesis tested

For each bin i we have the null hypothesis
H0: The marks of the points in track 1 that are inside segments of track 2, are independent
of the marks of the segments.

The alternative hypothesis is:
H1: The marks of the points in track 1 that are inside segments of track 2 depend on the
marks of the segments.

Statistics and rejection of the null hypothesis, categorical variables

In this section we assume both points in track 1 and segments of track 2 have categorical
marks. Let r be the number of categories for marks in points in track 1 and let c be the
number of categories for marks in segments in track 2. Furthermore, let Oi,j be the number
of observations of points from track 1 with mark equal i that are inside segment from track 2



with mark j. In this test we neglect all points of track 1 that are not inside segments of track
2. The table with the Oi,j values is denoted a contingency table with r rows and c columns.

Let N be the total number of points from track 1 that are inside segments in track 2,
i.e. N =

∑r
i=1

∑c
j=1Oi,j . If the marks of the points are independent of the marks of the

segments, we expect Oi,j ≈ Ei,j where

Ei,j =
1
N

r∑
k=1

Ok,j

c∑
k=1

Oi,k.

Let

X =
r∑
i=1

c∑
j=1

(Oi,j − Ei,j)2

Ei,j
.

Under the null hypothesis X is χ2-distributed with (r−1)(c−1) degrees of freedom. This
is an approximation that is considered accurate if all Oi,j > 10. (ref. Wikipedia/Pearson’s
chi-square test). We find the p-value from this distribution. The combinations of i and j that
give the largest contribution to the double sum in X are the cells where the deviation from
independence assumptions is largest.

Statistics and rejection of the null hypothesis, continuous or discrete vari-
ables

In this section we assume both points in track 1 and segments of track 2 have continuous or
discrete marks. Let Xi be the mark of a point in track 1 that is inside a segment in track 2
with mark Yi for i = 1, 2, · · · , n. We use the following test statistics:

The sample correlation

rx,y =
∑n

i=1(Xi − X̄i)(Yi − Ȳ )
(n− 1)sxsy

=
∑n

i=1XiYi − nX̄Ȳ
(n− 1)sxsy

where X̄ = 1
n

∑n
i=1Xi and Ȳ = 1

n

∑n
i=1 Yi and s2x = 1

n−1

∑n
i=1(Xi−X̄)2 and s2y = 1

n−1

∑n
i=1(Yi−

Ȳ )2.
Spearman’s rank correlation is defined as the sample correlation except that it uses the

ranks xi and yi instead of the original data Xi and Yi.
Kendall τ rank correlation is then defined as

τ =
2(nc − nd)
n(n− 1)

.

where nc is the number of concordant pairs i.e. the number of pairs where (Xi − Xj)(Yi −
Yj) > 0 and nd is the number of of disconcordant pairs i.e. the number of pairs where
(Xi−Xj)(Yi−Yj) < 0. The pairs where both Xi = Xj and Yi = Yj are both condordant and
disconcordant, but are in fact not critical for the definition of Kendall τ.

The distribution for the sample correlation, Spearman’s rank correlation and Kendall τ
are known and we may find the p-value from these distributions.

In addition, we may use the test statistics

Z1 =
n∑
i=1

(Xi − Yi)2,



and

Z2 =
n∑
i=1

|Xi − Yi|

The distribution for these test statistics are not know and it is necessary with MC simu-
lations in order to decide whether to reject the hypothesis.



UP - MS, Located in highly marked segments

Tracks

• Track 1: Unmarked points

• Track 2: Segments with an attached variable/mark

Remark: Mark of Track 2 assumed to be real numbers or an ordered categorical variable
(including the binomial case).

Questions

Is there within the considered bin a correlation between mark values of track 2 and the number
of points in the segments of track 1?

Simple model: Segments either of equal length or the segment length is unim-
portant

We then have a set of pairs (number of points, mark value), and we may use correlation tests.
Specific assumptions on the relations between the number of points and the mark value will
normally be difficult to establish, and we thus use the well-known non-parametric test based
on Kendall’s tau. Note that the null hypothesis of no correlation may be rejected either due
to some relation between the marks and points or due to factors affecting both, e.g. both
number of points and mark values being systematically high in certain areas within the bin.

Alternative model: For fixed mark value, the number of points is approximately
proportional to segment length.

Assume that the values of the mark are real numbers, and define:

Xi: Number of points in segment i.

Yi: Value of variable in segment i.

Li: Length of segment i.

Choose model (e.g. based on graphical displays):

Model 1: Xi/Li = α+ βYi

Model 2: ln (Xi + ε)/Li = α+ βYi

Model 3: ln (Xi + ε)/Li = α+ β lnYi + ε

The selected model is tested by ordinary regression. Note that extension to more than
one mark/variable is simple, as is the use of nominal variables (using general linear models).


