CSE 427

Markov Models and Hidden Markov Models
Dosage Compensation and X-Inactivation

2 copies (mom/dad) of each chromosome 1-22
Mostly, both copies of each gene are expressed
 E.g., A B O blood group defined by 2 alleles of 1 gene
Women (XX) get double dose of X genes (vs XY)?
So, early in embryogenesis:
 • One X randomly inactivated in each cell
 • Choice maintained in daughter cells
Calico: a major coat color gene is on X

How?
Reminder: Proteins “Read” DNA

E.g.:

(A) COOH recognition helix

NH₂

(B)
Down in the Groove

Different patterns of hydrophobic methyls, potential H bonds, etc. at edges of different base pairs. They’re accessible, esp. in major groove.

Figure 7-7 Molecular Biology of the Cell 5/e (© Garland Science 2008)
DNA Methylation

CpG - 2 adjacent nts, same strand
(not Watson-Crick pair; “p” mnemonic for the phosphodiester bond of the DNA backbone)

C of CpG is often (70-80%) methylated in mammals i.e., CH₃ group added (both strands)
Same Pairing

Methyl-C alters major groove profile (∴ TF binding), but not base-pairing, transcription or replication.

Figure 7-7 Molecular Biology of the Cell 5/e (© Garland Science 2008)
Calico Cats

Calico cat story: patchwork coat-color in some female cats partially explained by X-inactivation
And heavily methylating the inactive X is part of the mechanism of X-inactivation
And methylation is broadly important for other reasons, and sculpts the genome…

http://upload.wikimedia.org/wikipedia/commons/b/ba/Calico_cat
DNA Methylation—Why

In vertebrates, it generally silences transcription (Epigenetics) X-inactivation, imprinting, repression of mobile elements, cancers, aging, and developmental differentiation

E.g., if a stem cell divides, one daughter fated to be liver, other kidney, need to

(a) Turn off liver genes in kidney & vice versa, and
(b) Remember that through subsequent cell divisions

How? One way:

(a) Methylate genes, esp. promoters, to silence them
(b) After ÷, DNA methyltransferases convert hemi- to fully-methylated (not trivial: deleting methyltransferase is embrionic-lethal in mice)

Major exception: promoters of “housekeeping” genes
“CpG Islands”

Methyl-C mutates to T relatively easily
Net: CpG is less common than expected genome-wide:
\[f(\text{CpG}) < f(\text{C}) \times f(\text{G}) \]

BUT in some regions (e.g. active promoters), CpGs remain unmethylated, so CpG → TpG less likely there: makes “CpG Islands”; often mark gene-rich regions
CpG Islands

More CpG than elsewhere (say, CpG/GpC>50%)
More C & G than elsewhere, too (say, C+G>50%)
Typical length: few 100 to few 1000 bp

Questions
Is a short sequence (say, 200 bp) a CpG island or not?
Given long sequence (say, 10-100kb), find CpG islands?
Markov & Hidden Markov Models

References (see also online reading page):
Independence

A key issue: Previous models we’ve talked about assume *independence* of nucleotides in different positions - definitely unrealistic.

Markov models allow us to relax that assumption.
A sequence x_1, x_2, \ldots of random variables is a \textit{k-th order Markov chain} if, for all i, i^{th} value is independent of all but the previous k values:

$$P(x_i \mid x_1, x_2, \ldots, x_{i-1}) = P(x_i \mid x_{i-k}, x_{i-k+1}, \ldots, x_{i-1})$$

Example 1: Uniform random ACGT
Example 2: Weight matrix model
Example 3: ACGT, but ↓ $\text{Pr}(G \text{ following } C)$

\begin{align*}
\text{Markov Chains} \quad & \quad \text{Markov Chains} \\
\text{A sequence } x_1, x_2, \ldots \text{ of random variables is a } & \text{A sequence } x_1, x_2, \ldots \text{ of random variables is a} \\
\textit{k-th order Markov chain} \text{ if, for all } i, i^{th} \text{ value is} & \textit{k-th order Markov chain} \text{ if, for all } i, i^{th} \text{ value is} \\
\text{independent of all but the previous } k \text{ values:} & \text{independent of all but the previous } k \text{ values:} \\
& \\
P(x_i \mid x_1, x_2, \ldots, x_{i-1}) & = \quad \text{Example 1: Uniform random ACGT} \\
& \quad \text{Example 2: Weight matrix model} \\
& = \quad \text{Example 3: ACGT, but ↓ Pr(G following C)} \\
\end{align*}
A Markov Model (1st order)

States: A, C, G, T
Emissions: corresponding letter
Transitions: $a_{st} = P(x_i = t \mid x_{i-1} = s)$
A Markov Model (1st order)

States: A, C, G, T
Emissions: corresponding letter
Transitions: $a_{st} = P(x_i = t \mid x_{i-1} = s)$
Begin/End states

Diagram: A Markov Chain with states A, C, G, T, and transitions between them as specified by the transition probabilities.
Pr of emitting sequence x

\[
x = x_1 \ x_2 \ \ldots \ x_n
\]

\[
P(x) = P(x_1, x_2, \ldots, x_n)
\]

\[
= P(x_1) \cdot P(x_2 | x_1) \cdots P(x_n | x_{n-1}, \ldots, x_1)
\]

\[
= P(x_1) \cdot P(x_2 | x_1) \cdots P(x_n | x_{n-1})
\]

\[
= P(x_1) \prod_{i=1}^{n-1} a_{x_i, x_{i+1}}
\]

\[
= \prod_{i=0}^{n-1} a_{x_i, x_{i+1}} \text{ (with Begin state)}
\]
Training

Max likelihood estimates for transition probabilities are just the frequencies of transitions when emitting the training sequences

E.g., from 48 CpG islands in 60k bp:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>T</th>
<th></th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>0.180</td>
<td>0.274</td>
<td>0.426</td>
<td>0.120</td>
<td></td>
<td>0.300</td>
<td>0.205</td>
<td>0.285</td>
<td>0.210</td>
</tr>
<tr>
<td>-</td>
<td>0.171</td>
<td>0.368</td>
<td>0.274</td>
<td>0.188</td>
<td></td>
<td>0.322</td>
<td>0.298</td>
<td>0.078</td>
<td>0.302</td>
</tr>
<tr>
<td></td>
<td>0.161</td>
<td>0.339</td>
<td>0.375</td>
<td>0.125</td>
<td></td>
<td>0.248</td>
<td>0.246</td>
<td>0.298</td>
<td>0.208</td>
</tr>
<tr>
<td></td>
<td>0.079</td>
<td>0.355</td>
<td>0.384</td>
<td>0.182</td>
<td></td>
<td>0.177</td>
<td>0.239</td>
<td>0.292</td>
<td>0.292</td>
</tr>
</tbody>
</table>
Discrimination/Classification

Log likelihood ratio of CpG model vs background model

\[S(x) = \log \frac{P(x|+\text{model})}{P(x|-\text{model})} = \sum_{i=1}^{L} \log \frac{a_{x_{i-1},x_i}^+}{a_{x_{i-1},x_i}^-} = \sum_{i=1}^{L} \log \beta_{x_{i-1},x_i} \]

<table>
<thead>
<tr>
<th>(\beta)</th>
<th>(A)</th>
<th>(C)</th>
<th>(G)</th>
<th>(T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-0.740</td>
<td>0.419</td>
<td>0.580</td>
<td>-0.803</td>
</tr>
<tr>
<td>C</td>
<td>-0.913</td>
<td>0.302</td>
<td>1.812</td>
<td>-0.685</td>
</tr>
<tr>
<td>G</td>
<td>-0.624</td>
<td>0.461</td>
<td>0.331</td>
<td>-0.730</td>
</tr>
<tr>
<td>T</td>
<td>-1.169</td>
<td>0.573</td>
<td>0.393</td>
<td>-0.679</td>
</tr>
</tbody>
</table>

From DEKM
Figure 3.2 *Histogram of length-normalized scores.*
Aside: 1st Order “WMM”
Questions

Q1: Given a short sequence, is it more likely from feature model or background model? Above

Q2: Given a long sequence, where are the features in it (if any)

 Approach 1: score 100 bp (e.g.) windows

 Pro: simple

 Con: arbitrary, fixed length, inflexible

 Approach 2: combine +/- models.
Emphasis is “Which (hidden) state?” not “Which model?”
Hidden Markov Models
(HMMs; Claude Shannon, 1948)

States: \(1, 2, 3, \ldots\)

Paths: sequences of states \(\pi = (\pi_1, \pi_2, \ldots)\)

Transitions: \(a_{k,l} = P(\pi_i = l \mid \pi_{i-1} = k)\)

Emissions: \(e_k(b) = P(x_i = b \mid \pi_i = k)\)

Observed data: emission sequence

Hidden data: state/transition sequence
The Occasionally Dishonest Casino

1 fair die, 1 “loaded” die, occasionally swapped

- Fair die: 1: 1/6, 2: 1/6, 3: 1/6, 4: 1/6, 5: 1/6, 6: 1/6
- Loaded die: 1: 1/10, 2: 1/10, 3: 1/10, 4: 1/10, 5: 1/10, 6: 1/2
Rolls: 31511624644644245311321631164152133625144543631656626566666
Die: FFFLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
Viterbi: FFFLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL

Rolls: 6511664531326512456366646316366631623264552362666666265151631
Die: LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLFFLLL
Viterbi: LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLFF

Rolls: 222555441666566563564324364131513465146353411126414626253356
Die: FFFFFFFFFLL
Inferring hidden stuff

Joint prob of a given path π & emission sequence x:

$$P(x, \pi) = a_{0, \pi_1} \prod_{i=1}^{n} e_{\pi_i}(x_i) \cdot a_{\pi_i, \pi_{i+1}}$$

But π is hidden; what to do? Some alternatives:

Most probable single path

$$\pi^* = \arg \max_{\pi} P(x, \pi)$$

Sequence of most probable states

$$\hat{\pi}_i = \arg \max_{k} P(\pi_i = k \mid x)$$

Etc.

Notation:

- $\max_x F(x)$ = the maximum y-value attained by $F()$
- $\arg \max_x F(x)$ = the x-value where that occurs
The Viterbi Algorithm: The most probable path

Viterbi finds: \(\pi^* = \arg\max_{\pi} P(x, \pi) \)

Possibly there are \(10^{99}\) paths of prob \(10^{-99}\)
(If so, non-Viterbi approaches may be preferable.)

More commonly, one path (+ slight variants) dominate others; Viterbi finds that

Key problem: exponentially many paths \(\pi\)
Unrolling an HMM

Conceptually, sometimes convenient
Note exponentially many paths
Viterbi

\[v_l(i) = \text{probability of the most probable path emitting } x_1, x_2, \ldots, x_i \text{ and ending in state } l \]

Initialize:

\[v_l(0) = \begin{cases}
1 & \text{if } l = \text{Begin state} \\
0 & \text{otherwise}
\end{cases} \]

General case:

\[v_l(i + 1) = e_l(x_{i+1}) \cdot \max_k (v_k(i) a_{k,l}) \]
HMM Casino Example

(Excel spreadsheet on web; download & play...)

HMM Parameters

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>F</th>
<th>p(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>0.52</td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>0.60</td>
<td>0.40</td>
<td>0.50</td>
</tr>
<tr>
<td>F</td>
<td>0.17</td>
<td>0.83</td>
<td>0.17</td>
</tr>
</tbody>
</table>

Rolls: 316664

L: 52 x 0.10 = 0.052

B: 0.52 x 0.10 = 0.052

F: 0.48 x 0.17 = 0.080

Max = 0.0031

Max = 9.41E-04

Max = 1.53E-03
Viterbi Traceback

Above finds *probability* of best path

To find the path itself, trace *backward* to the state k attaining the max at each stage

\[v_l(i + 1) = e_l(x_{i+1}) \cdot \max_k (v_k(i) a_{k,l}) \]
HMM Casino Example

(Excel spreadsheet on web; download & play...)
<table>
<thead>
<tr>
<th>Rolls</th>
<th>Die</th>
<th>Viterbi</th>
</tr>
</thead>
<tbody>
<tr>
<td>3151162464464245311321631164152133625144543631656626566666</td>
<td>FFFFFFFFFFFFFFFFFFFFFFFFFFFFF</td>
<td>FFFFFFFFFFFFFFFFFFFFFFFFFFFFF</td>
</tr>
<tr>
<td>65116645313265124563666463163666316232645236266666625151631</td>
<td>LLLLLLFFFFFFFFFFFFFFFFFFFFF</td>
<td>LLLLLLFFFFFFFFFFFFFFFFFFFFF</td>
</tr>
<tr>
<td>222555441666566563564324364131513465146353411126414626253356</td>
<td>FFFFFFFFFFLLLLLLLFFFFFFFFFFL</td>
<td>FFFFFFFFFFLLLLLLLFFFFFFFFFFL</td>
</tr>
<tr>
<td>36616366646623253441366166116325256246225265252266435353336</td>
<td>LLLLLLLLLFFFFFFFFFFFFFFFFF</td>
<td>LLLLLLLLLFFFFFFFFFFFFFFFFF</td>
</tr>
<tr>
<td>233121625364441443233516324363366562466662632666612355245242</td>
<td>FFFFFFFFFFFFFFFFFFFFFFFFFFFFF</td>
<td>FFFFFFFFFFFFFFFFFFFFFFFFFFFFF</td>
</tr>
</tbody>
</table>

Figure 3.5

Rolls: Visible data—300 rolls of a die as described above.

Die: Hidden data—which die was actually used for that roll (*F* = fair, *L* = loaded).

Viterbi: the prediction by the Viterbi algorithm is shown.
Most probable path ≠ Sequence of most probable states

Another example, based on casino dice again:

Suppose \(p(\text{fair} \leftrightarrow \text{loaded}) \) transitions are 10-99 and roll sequence is 1 1 1 1 1 6 6 6 6 6...6 6 6; then fair state is more likely all through 1’s & into the run of 6’s, but eventually loaded wins, and the improbable \(F \rightarrow L \) transitions make Viterbi = all L.

\[
\begin{array}{cccccccccc}
 & & & & & 6 & 6 & 6 & 6 & 6 \\
L & & & & & & & & & \\
F & & & & & * & * & * & * & * \\
\end{array}
\]

\(p(L)/p(F) \rightarrow 0.60 \ 0.36 \ 0.22 \ 0.13 \ 0.08 \ 0.23 \ 0.70 \ 2.1 \ 6.3 \ 18.9 \)

\(= \) Viterbi

\(* = \) max prob
Is Viterbi “best”?

Viterbi finds \(\pi^* = \arg \max_{\pi} P(x, \pi) \)

Most probable (Viterbi) path goes through 5, but most probable state at 2nd step is 6 (i.e., Viterbi is not the only interesting answer.)
An HMM (unrolled)
Viterbi: best path to each state

Viterbi score:

\[v_l(i + 1) = e_l(x_{i+1}) \cdot \max_k(v_k(i) a_{k,l}) \]

Viterbi path\(^R:\)

\[back_l(i + 1) = \arg \max_k(v_k(i) a_{k,l}) \]
Another Q: What’s $P(x)$?

Given an HMM and a sequence x, Viterbi finds the single path π having the greatest probability of emitting x (and implicitly finds that probability $P(x, \pi)$).

What if I don’t care about π? E.g., what is the probability $P(x)$ of emitting x, on some path?

Of course, $P(x) = \sum \pi P(x, \pi)$, i.e. sum over all paths, but exponentially many, so nontrivial …

Answer to this and related Qs is easiest to think about by focusing on intermediate states.
The Forward Algorithm

For each state/time, want total probability of all paths leading to it, with previous emissions.

\[f_k(i) \triangleq P(x_1 \ldots x_i, \pi_i = k) \]

\[f_l(i + 1) = e_l(x_{i+1}) \sum_k f_k(i) a_{k,l} \]

\[P(x) = \sum_\pi P(x, \pi) = \sum_k f_k(n) a_{k,\text{end}} \]
The Backward Algorithm

Similar: for each state/time, want total probability of all paths from it, with subsequent emissions, conditional on that state.

\[b_k(i) \triangleq P(x_{i+1} \cdots x_n \mid \pi_i = k) \]

\[b_k(i) = \sum_l a_{k,l} e_l(x_{i+1}) b_l(i + 1) \]

\[b_k(n) = a_{k,\text{end}} \quad \text{[& } P(x) = b_{\text{start}}(0) \text{]} \]
In state k at step i?

\[P(x, \pi_i = k) \]

\[= P(x_1, \ldots, x_i, \pi_i = k) \cdot P(x_{i+1}, \ldots, x_n \mid x_1, \ldots, x_i, \pi_i = k) \]

\[= P(x_1, \ldots, x_i, \pi_i = k) \cdot P(x_{i+1}, \ldots, x_n \mid \pi_i = k) \]

\[= f_k(i) \cdot b_k(i) \]

\[P(\pi_i = k \mid x) = \frac{P(x, \pi_i = k)}{P(x)} = \frac{f_k(i) \cdot b_k(i)}{P(x)} \]
Posterior Decoding, I

Alternative 1: what’s the most likely state at step i?

$$\hat{\pi}_i = \arg\max_k P(\pi_i = k \mid x)$$

Note: the most likely sequence of states (a path) ≠ the sequence of most likely states. That may even be an illegal path! (E.g. 1,2,6,7 below)
The Occasionally Dishonest Casino

1 fair die, 1 “loaded” die, occasionally swapped

![Diagram showing probabilities and transitions between fair and loaded dice states.](image)
<table>
<thead>
<tr>
<th>Rolls</th>
<th>Die</th>
<th>Viterbi</th>
</tr>
</thead>
<tbody>
<tr>
<td>3151162464644245311321631164152133625144543631656626566666</td>
<td>FFF</td>
<td>FFF</td>
</tr>
<tr>
<td>651166453132651245636664631636663162326455236266666625151631</td>
<td>LLL</td>
<td>LLL</td>
</tr>
<tr>
<td>22255544166656563564324364131513465146353411126414626253356</td>
<td>FFFFFFFFFFLLLLLLLNL</td>
<td>FFF</td>
</tr>
<tr>
<td>366163666466232534413661661163252562462255265252266435353336</td>
<td>LLLLNL</td>
<td>LLLLLLLNL</td>
</tr>
<tr>
<td>233121625364414432335163243633665624666626326666612355245242</td>
<td>FFF</td>
<td>FFF</td>
</tr>
</tbody>
</table>

Figure 3.5

Rolls: Visible data—300 rolls of a die as described above.

Die: Hidden data—which die was actually used for that roll (F = fair, L = loaded).

Viterbi: the prediction by the Viterbi algorithm is shown.
Posterior Decoding

Figure 3.6 The posterior probability of being in the state corresponding to the fair die in the casino example. The x axis shows the number of the roll. The shaded areas show when the roll was generated by the loaded die.
Posterior Decoding, II

Alternative 1: what’s most likely state at step i?

$$\hat{\pi}_i = \arg \max_k P(\pi_i = k \mid x)$$

Alternative 2: given some function $g(k)$ on states, what’s its expectation. E.g., what’s probability of “+” model in CpG HMM ($g(k)=1$ iff k is “+” state)?

$$G(i \mid x) = \sum_k P(\pi_i = k \mid x) \cdot g(k)$$
CpG Islands again

Data: 41 human sequences, totaling 60kbp, including 48 CpG islands of about 1kbp each

Viterbi:
 Found 46 of 48
 plus 121 “false positives”

Posterior Decoding:
 same 2 false negatives
 plus 236 false positives

Post-process:
 46/48
 67 false pos

Post-process: merge within 500; discard < 500
Training

Given model topology & training sequences, learn transition and emission probabilities

If π known, then MLE is just frequency observed in training data

$$a_{k,l} = \frac{\text{count of } k \rightarrow l \text{ transitions}}{\text{count of } k \rightarrow \text{anywhere transitions}}$$

$$e_k(b) = \ldots$$

If π hidden, then use EM:

given θ, estimate π; given π estimate θ; repeat

$\{2 \text{ ways}\}$

+ pseudocounts?
Viterbi Training

given θ, estimate π; given π estimate θ; repeat

Make initial estimates of parameters θ
Find Viterbi path π for each training sequence
Count transitions/emissions on those paths, getting new θ
Repeat

Not rigorously optimizing desired likelihood, but still useful & commonly used.
(Arguably good if you’re doing Viterbi decoding.)

(And see note about “classification EM,” ~#45 in MLE-EM slides.)
Baum-Welch Training

EM: given θ, estimate π ensemble; then re-estimate θ

$$P(\pi_i = k, \pi_{i+1} = l \mid x, \theta)$$

$$= \frac{f_k(i \mid \theta) a_{k,l} e_l(x_{i+1}) b_l(i + 1 \mid \theta)}{P(x \mid \theta)}$$

Estimated $\#$ of $k \rightarrow l$ transitions $\hat{A}_{k,l}$ on set of seqs x^j

$$= \sum_{\text{training seqs } x^j} \sum_i P(\pi_i = k, \pi_{i+1} = l \mid x^j, \theta)$$

New estimate $\hat{a}_{k,l} = \frac{\hat{A}_{k,l}}{\sum_l \hat{A}_{k,l}}$

Emissions: similar
Log-odds (vs all F) per roll

True model 0.101 bits
300-roll est. 0.097 bits
30k-roll est. 0.100 bits
(NB: overestimated)
HMMs in Action: Pfam

http://pfam.xfam.org

Proteins fall into families, across & within species

Ex: Globins, Zinc fingers, Leucine zippers, GPCRs, ...

Identifying family very useful: suggests function, etc.

So, search & alignment are both important

Q. Why not just use Blast/Smith-Waterman?

A. There is more info in multiple examples (e.g., psiBLAST)

One very successful approach: profile HMMs
Alignment of 7 globins. A-H mark 8 alpha helices.
Consensus line: upper case = 6/7, lower = 4/7, dot=3/7.
Could we have a profile (aka weight matrix) w/ indels?
Profile HMM Structure

Figure 5.2 *The transition structure of a profile HMM.*

M$_j$: Match states (20 emission probabilities)
I$_j$: Insert states (Background emission probabilities)
D$_j$: Delete states (silent - no emission)
Silent States

Example: chain of states, can skip some

Problem: many parameters.
A solution: chain of “silent” states; fewer parameters (but less detailed control)

Algorithms: basically the same.
Using Profile HMM’s

Search
Forward or Viterbi

Scoring
Log likelihood (length adjusted)
Log odds vs background
Z scores from either

Alignment
Viterbi

next slides
Figure 5.5 To the left the length-normalized LL score is shown as a function of sequence length. The right plot shows the same for the log-odds score.
Figure 5.6 The Z-score calculated from the LL scores (left) and the log-odds (right).
Pfam Model Building

Hand-curated “seed” multiple alignments
Train profile HMM from seed alignment
Hand-chosen score threshold(s)
Automatic classification/alignment of all other protein sequences

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>#Families</th>
<th>Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.0</td>
<td>3/2011</td>
<td>12273</td>
<td>75</td>
</tr>
<tr>
<td>27.0</td>
<td>3/2013</td>
<td>14831</td>
<td>90</td>
</tr>
<tr>
<td>31.0</td>
<td>3/2017</td>
<td>16712</td>
<td></td>
</tr>
<tr>
<td>32.0</td>
<td>9/2018</td>
<td>17929</td>
<td></td>
</tr>
<tr>
<td>33.1</td>
<td>5/2020</td>
<td>18259</td>
<td></td>
</tr>
</tbody>
</table>
HMM Summary

Inference

- Viterbi – best single path (max of products)
- Forward – sum over all paths (sum of products)
- Backward – similar
- Posterior decoding

Model building

- Semi-supervised – typically fix architecture (e.g. profile HMM), then learn parameters
- Baum-Welch – training via EM and forward/backward (aka the forward/backward algorithm)
- Viterbi training – also “EM-like”, but Viterbi-based
HMM Summary (cont.)

Search:
 Viterbi or forward

Scoring:
 Odds ratio to background
 Z-score
 E-values, etc., too

Excellent tools available (HMMer, Pfam, …)

Very widely used for bioseq analysis (& elsewhere)