Some Notes for HW 4

ROC Curves

• sensitivity, recall, hit rate, or <u>true positive rate (TPR)</u>

$$TPR = \frac{TP}{P} = \frac{TP}{TP + FN} = 1 - FNR$$

fall-out or <u>false positive rate (FPR)</u>

$$FPR = \frac{FP}{N} = \frac{FP}{FP + TN} = 1 - TNR$$

Blue = ORF length threshold; Green = Markov Model threshold 0.8 0.1 Combined ORF length-based threshold 6.0 TPR MM-based threshold 0.8 9.0 TPR 0.7 0.2 9.0 0.0 0.5 0.2 0.0

0.0005

0.0010

0.0015

0.0000

7

0.0020

Extra Slides re ROC Curves

- Slides below have more detail than I presented in lecture
- The slide numbered "17" is especially important explains how to plot the curve and how to calculate "Area Under Curve"

Some notes on HW #4

How do we evaluate and compare classifiers? What's an ROC curve?

Quantifying Quality of a Classifier

Every instance has an unknown actual +/- label, and also a predicted +/- label

- Sensitivity, aka True Positive Rate: what fraction of the actual +'s are found among the predicted +'s, independent of how actual -'s are classified
- Specificity, aka False Negative Rate: what fraction of the actual -'s are found among the predicted -'s, independent of how actual +'s are classified

"just say yes" has 100% sensitivity, but (likely) poor specificity; "just say no", the opposite.

EXAMPLE

"A diagnostic test with sensitivity 67% and specificity 91% is applied to 2030 people to look for a disorder with a population prevalence of 1.48%"

		The patient's "true" status		
		Condition positive	Condition negative	
blood test outcome	Test outcome positive	True positive (TP) = 20	False positive (FP) = 180	Positive predictive value = TP / (TP + FP) = 20 / (20 + 180) = 10%
	Test outcome negative	False negative (FN) = 10	True negative (TN) = 1820	Negative predictive value = TN / (FN + TN) = 1820 / (10 + 1820) ≈ 99.5%
		Sensitivity = TP / (TP + FN) = 20 / (20 + 10) ≈ 67%	Specificity = TN / (FP + TN) = 1820 / (180 + 1820) = 91%	

https://en.wikipedia.org/wiki/Sensitivity_and_specificity

"All the Jargon That's Fit To Print"

Many quantitative aspects of "Accuracy"

```
true positive (TP)
   eqv. with hit
true negative (TN)
   eqv. with correct rejection
false positive (FP)
   eqv. with false alarm, Type I error
false negative (FN)
   eqv. with miss, Type II error
sensitivity or true positive rate (TPR)
   eqv. with hit rate, recall
   TPR = TP/P = TP/(TP + FN)
specificity (SPC) or true negative rate
   SPC = TN/N = TN/(TN + FP)
precision or positive predictive value (PPV)
   PPV = TP/(TP + FP)
negative predictive value (NPV)
   NPV = TN/(TN + FN)
fall-out or false positive rate (FPR)
   FPR = FP/N = FP/(FP + TN) = 1 - SPC
false negative rate (FNR)
   FNR = FN/(TP + FN) = 1 - TPR
false discovery rate (FDR)
   FDR = FP/(TP + FP) = 1 - PPV
accuracy (ACC)
   ACC = (TP + TN)/(TP + FP + FN + TN)
```

ROC Curves

One View of a 2-parameter trade-off (true/false positives)

Parametric Curves

- Cartesian circle:
 - $x^2 + y^2 = 1$ (and good luck finding (x,y) pairs!)
- Parametric circle:
 - $x = \cos t$, $y = \sin t$, $0 \le t \le 2\pi$
 - t is "hidden" parameter in plot

ROC Curves are *Parametric*

• There is a "hidden" (in plot) threshold parameter defining TPR/FPR; varying it over $(-\infty, +\infty)$ traces out the ROC curve

NB: lowering thresh cannot give fewer positives, hence neither TPR nor FPR lowered, so ROC curve MUST be non-decreasing!

How to plot a ROC curve

- Sort all instances by decreasing "score"
- Label each as to "actual" +/- status
- Calculate running totals of # of +/- at or above each row of table
- For a given score threshold, τ, find last row with score ≥ τ; all items at or above that are "predicted positives" if you use threshold τ, so that row index & corresponding totals give TPR & FPR, hence a point on the ROC curve.
- Things change $AT \tau$ = some row's score, not between rows, so plotting those points gives complete ROC "curve", (a step function) and precise AUC (Area Under Curve; sum of areas of every rectangular step).
- A picky detail: include the point at (0,0), too, corresponding to $\tau = + \infty$