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Gene Finding: Motivation

Sequence data flooding in

What does it mean?
protein genes, RNA genes, mitochondria, chloroplast,

regulation, replication, structure, repeats, transposons, unknown stuff, ...

More generally, how do you: learn from
complex data in an unknown language,
leverage what’s known to help discover

what’s not



Protein Coding Nuclear DNA

Focus of these slides
Goal: Automated annotation of new seq data

State of the Art:

In Eukaryotes:
predictions ~ 60% similar to real proteins
~80% if database similarity used

Prokaryotes
better, but still imperfect

Lab verification still needed, still expensive
Largely done for Human, mouse, a few others
unlikely for most others
and non-coding is poorly understood even in human



Biological Basics

Central Dogma:
DNA transcription= RNA translation: Protein

Codons: 3 bases code one amino acid

Start codon
Stop codons
3’, 5’ Untranslated Regions (UTR’s)
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Figure 6-9 Molecular Biology of the Cell 5/e (© Garland Science 2008)



Translation: mRBNA — Protein

Beginning of protein
{amino terminus)

. 450S

Watson, Gilman, Witkowski, & Zoller, 1992



O0SOMeES

tRNA anticodon binds
to mRNA codon

_ Ribosome moves to next codon
h o
;9 3

Watson, Gilman, Witkowski, & Zoller, 1992



DNA (thin lines), RNA Pol (Arrow), mRNA with
attached Ribosomes (dark circles

Figure 3-7. Coupled transcription/translation in bacteria is visualized. Oscar Miller and
colleagues lysed E. coli cells and immediately collected the cell contents on electron micro-
scope grids. They saw threads of mRNA still associated with DNA (thin lines), and ribo-
somes—several at a time—were already translating protein along the mRNA. Thus, in
bacterial cells, the picture of information recovery and use, at least in broad outline, was
complete: mRNA was made on demand; ribosomes recognized the 5 end of the
mRNA, bound, and began protein synthesis even before the mRNA had been completely
synthesized. (In this photo, the arrow indicates a presumptive RNA polymerase [the faint
disk to the left of the first ribosome]. The DNA thread at the top is being copied into
mRNA, but the one at the bottom is not. Both are presumably double stranded.)

Darne", p1 20 (Reprinted, with permission, from Miller et al. 1970 [(©)AAAS].) 8



Codons & The Genetic Code

Second Base

First Base

C A
Phe Ser Tyr Cys U
u Phe Ser Tyr Cys C
Leu Ser A
Leu Ser Trp G
Leu Pro His Arg U
e Leu Pro His Arg C
Leu Pro Gin Arg A
Leu Pro Gin Arg G
lle Thr Asn Ser U
A llle Thr Asn Ser C
lle Thr Lys Arg A
BllVet/Start Ll Lys Arg G
Val Ala Asp Gly U
a Val Ala Asp Gly C
Val Ala Glu Gly A
Val Ala Glu Gly G

Third Base

Ala
Arg
Asn

Asp
Cys
GIn
Glu
Gly
His
lle
Leu
Lys
Met
Phe
Pro
Ser
Thr
Trp
Tyr
Val

: Alanine

: Arginine

: Asparagine

: Aspartic acid
: Cysteine

: Glutamine

: Glutamic acid
: Glycine

: Histidine

: Isoleucine

: Leucine

: Lysine

: Methionine

: Phenylalanine
: Proline

: Serine

: Threonine

: Tryptophane

: Tyrosine

: Valine



ldea #1: Find Long ORF’s

Reading Frame: which of the 3 possible
sequences of triples does the ribosome read?

Open Reading Frame: No internal stop codons

In random DNA
average ORF 64/3 ~= 21 triplets
300bp ORF once per 36kbp per strand

But average protein ~ 1000bp, so long ORF is
likely a real protein-coding gene
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A Simple ORF finder

start at left end

scan triplet-by-non-overlapping triplet for AUG
then continue scan for STOP
repeat until right end

repeat all starting at offset 1

repeat all starting at offset 2

then do it again on the other strand
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Scanning for ORFs

1 e : l_;—n 1 1 1 !
2 G T oo 3T T -
g — Wi i— @ — >

UUAAUGUGUCAUUGAUUAAG
AAUUACA CAGUAACUAAUAC

4 O —a - O
S 4— | """ . ” """" ” ______ !L_"I _______
e L . |

* In bacteria, GUG is sometimes a start codon...
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ldea #2: Codon Frequency

In random DNA
Leucine : Alanine : Tryptophan =6 : 4 : 1

But in real protein, ratios ~6.9 :6.5 : 1
So, coding DNA is not random

Even more: synonym usage is biased (in a

species dependant way)
examples known with 90% AT 3'd base
Why? E.g. efficiency, histone, enhancer, splice interactions
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ldea #3: Non-Independence

Not only is codon usage biased, but
residues (aa or nt) in one position are not
Independent of neighbors

How to model this? Markov models
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A Markov Model (1st order)

States: AC,G,T
Emissions: corresponding letter

Transitions:ay; = P(x;=t | X, ; =S) ——1storder



kth Order Markov Model

4k states, each in/out-degree 4, joined as follows:

YV W W

TS B T
&
PSS SN

emit A (XyZA XYyZT) emit T

(where xyz is a length k-1 string over {A,C,G, T}, and,

e.g., Axyz and xyzA are the same state when xyz=Ak"1)
16



E.g., a 2" order Markov Model




Summary: Prokaryotic Genes

In prokaryotes, most DNA is coding

Eg ~ 70% in H. influenzae (VS < 2% in humans)

Long ORFs + codon/nucleotide stats do well

Can improve by modeling associated features
(TATA boxes, promoters, etc.)

e.g. via WMM or higher-order Markov models

But obviously won'’t be perfect
short genes, frame shifts, 5’ & 3" UTR’s, ...
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GENES, PART I
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Eukaryotes

As In prokaryotes (but more variable)
promoters
start/stop transcription
start/stop translation
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And then...

intron loop
DNA

poly-A tail

Nobel Prize of the week: P. Sharp, 1993, “Splicing”
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Mechanical Devices of the
Spliceosome: Motors,
Clocks, Springs, and Things

Jonathan P. Staley and Christine Guthrie

CELL Volume 92, Issue 3, 6 February 1998, Pages 315-326
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Figure 2. Spliceosome
Assembly, Rearrangement,
and Disassembly Requires
ATP, Numerous DExD/H
box Proteins, and Prp24.
The snBRNPs are depicted
as circles. The pathway for
S. cerevisiae is shown.




Hints to Origins?

Tetrahymena thermophila

nucleotide

5' I I IeTmET) UCU/A{\G - 4GUAA - -- 3

intron
sequence
STEP 1 -
3,/ O\
5' - - IS UCU GUAA S _—_ 3'
GA
5 A
A

STEP 2

' - UCUUAA s~ - 3

precursor
RNA molecule

transient
intermediate

spliced
RNA molecule

excised
intron
sequence



Genes in Eukaryotes

As in prokaryotes New Features:
promoters Introns, exons, splicing

start/stop transcription branch point signal
alternative splicing

start/stop translation polyA site/tail

5’ 3’
UTR  exon intron exon intron UTR

2 2 2
AG/GT yyy.AG/G AG/GT

donor acceptor donor
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Characteristics of human genes
(Nature, 2/2001, Table 21)

Median Mean Sample (size)

Internal exon 122 bp 145 bp RefSeq alignments to draft genome sequence, with
confirmed intron boundaries (43,317 exons)

Exon number 7 8.8 RefSeq alignments to finished seq (3,501 genes)
Introns 1,023 bp | 3,365 bp RefSeq alignments to finished seq (27,238 introns)
3’ UTR 400 bp 770 bp Confirmed by mRNA or EST on chromo 22 (689)
5 UTR 240 bp 300 bp Confirmed by mRNA or EST on chromo 22 (463)
Coding seq 1,100 bp | 1340 bp Selected RefSeq entries (1,804)*
(CDS) 367 aa 447 aa
Genomic span 14 kb 27 kb | Selected RefSeq entries (1,804)*

* 1,804 selected RefSeq entries were those with full-
length unambiguous alignment to finished sequence
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Big Genes

Many genes are over 100 kb long,
Max known: dystrophin gene (DMD), 2.4 Mb.

Variation in size distribution of coding
seqguences and exons Is less extreme, but there
are remarkable outliers.

The titin gene has the longest currently known
coding sequence at 80,780 bp; it also has the
largest number of exons (178) and longest single
exon (17,106 bp).

RNApol rate: 1.2-2.5 kb/min =16 hours to transcribe DMD
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Percentage of exons

Percentage of introns
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Figure 36 GC content Nature 2/2001
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Other Relevant Features

PolyA Tails

100-300 A'’s typically added to the 3’ end of the
MRNA after transcription—not templated by DNA

Processed pseudogenes
Sometimes mRNA (after splicing + polyA) is
How? .~ reverse-transcribed into DNA and re-integrated into
Why? genome
~14,000 in human genome
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Alternative Splicing

Exon skipping/inclusion a1

S s P
Alternative 3’ splice site , /\"'

Alternative 5’ splice site _p—

Mutually exclusive exons _——-/r\.-./\——
R L SO —
Intron retention B il N

T Constitutiveexon [ [ Alternatively spliced exon

These are regulated, not just errors a1



Other Features (cont)

Alternative start sites (5’ ends)
Alternative PolyA sites (near 3’ ends)
Alternative splicing

Collectively, these affect an estimated 95% of genes,
with ~10 (a wild guess) isoforms per gene
(but can be huge; fly Dscam: 38,016, potentially)

Trans-splicing and gene fusions

(rare in humans but important in other orghanisms & some
tumors)
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Computational Gene Finding?

How do we algorithmically account for all
this complexity...
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A Case Study — Genscan

C Burge, S Karlin (1997), “Prediction of
complete gene structures in human
genomic DNA”, Journal of Molecular
Biology, 268: 78-94.
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Training Data

238 multi-exon genes
142 single-exon genes
total of 1492 exons
total of 1254 introns
total of 2.5 Mb

NO alternate splicing, none > 30kb, ...
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Performance Comparison

Accuracy
per nuc. per exon

Program Sn Sp Sn Sp Avg. ME WE

GENSCAN 093 093 0.78 081 0.80 0.09 0.05
FGENEH 0.77 088 061 064 064 0.15 0.12
GenelD 063 0.81| 044 046 045 0.28 0.24
Genie 0.76 077 055 048 051 0.17 0.33
GenlLang 0.72 0.79( 051 052 052 021 0.22
GeneParser2 066 0.79] 035 040 037 034 0.17
GRAIL2 0.72 087 036 043 040 025 0.11
SORFIND 0.71 085 042 047 045 024 0.14
Xpound 0.61 087 0.15 0.18 0.17 033 0.13
GenelDt 091 091 073 070 0.71 0.07 0.13
GeneParser3 0.86 091 056 058 057 0.14 0.09

After Burge&Karlin, Table 1. Sensitivity, Sn = TP/AP; Specificity, Sp = TP/PP



Generalized Hidden
Markov Models

States: 1, 2, ...

rT. Initial state distribution
a;. Transition probabilities
One submodel per state

Output string generated by submodel
not just 1 letter, potentially variable length
Given length L
Pick start state g, (~r7)
While Dd; <L
Pick d; & string s; of length d; ~ submodel for g;
Pick next state g, (~a;)

Output s;5....

37
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Length Distributions
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Figure 4. Length distributions are shown for (a) 1254 introns; (b) 238 initial exons; (c) 1151 internal exons; and (d) 238
terminal exons from the 238 multi-exon genes of the learning set #. Histograms (continuous lines) were derived with
a bin size of 300bp in (a), and 25bp in (b), (c), (d). The broken line in (a) shows a geometric (exponential) distri-
bution with parameters derived from the mean of the intron lengths; broken lines in (b), (c) and (d) are the smoothed
empirical distributions of exon lengths used by GENSCAN (details given by Burge, 1997). Note different horizontal
and vertical scales are used in (a), (b), (c), (d) and that multimodality in (b) and (d) may, in part, reflect relatively



Effect of G+C Content

Group

C + G% range

Number of genes

Est. proportion single-exon genes
Codelen: single-exon genes (bp)
Codelen: multi-exon genes (bp)
Introns per multi-exon gene
Mean intron length (bp)

Est. mean transcript length (bp)
Isochore

DNA amount in genome (Mb)
Estimated gene number

Est. mean intergenic length
Initial probabilities:
Intergenic (N)

Intron (I+, I-)

5’ Untranslated region (F+, F-)
3’ Untranslated region (T+, T-)

I

<43
65
0.16
1130
902
5.1
2069
10866
L1+L2
2074
22100
83000

0.892
0.095
0.008
0.005

I1
43-51
115
0.19
1251
908
4.9
1086
6504
H1+H2
1054
24700
36000

0.867
0.103
0.018
0.011

III
51-57
99
0.23
1304
1118
5.5
801
5781
H3
102
9100
5400

0.54
0.338
0.077
0.045

IV
>57
101
0.16
1137
1165
5.6
518
4833
H3
68
9100
2600

0.418
0.388
0.122

0.072
40



Submodels

5"UTR

L ~ geometric(769 bp), s ~ MM(5)
3" UTR

L ~ geometric(457 bp), s ~ MM(5)
Intergenic

L ~ geometric(GC-dependent), s ~ MM(5)
Introns

L ~ geometric(GC-dependent), s ~ MM(5)
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Submodel: Exons

Inhomogenious 3-periodic 5th order
Markov models

Separate models for low GC (<43%),
high GC

Track “phase” of exons, i.e. reading
frame.

42



Signal Models I: WMM'’s

Polyadenylation
6 bp, consensus AATAAA

Translation Start

12 bp, starting 6 bp before start codon
Translation stop

A stop codon, then 3 bp WMM
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Signal Models II: more WMM’s

Promoter

70% TATA
15 bp TATA WMM
L ~ Unif(14-20), s ~ null (indp, intergenic fregs)
8 bp cap signal WMM
30% TATA-less
40 bp null

44



What do splice sites look like?

5" exon

2N GEY. intron

L

acceptor




Signal Models IlI: W/WAM’s

Acceptor Splice Site (3’ end of intron)
[-20..+3] relative to splice site modeled by “1st order
weight array model”

Branch point & polypyrimidine tract
Hard. Even weak consensus like YYRAY found in
[-40..-21] in only 30% of training
“Windowed WAM”: 2nd order WAM, but averaged

over 5 preceding positions
“captures weak but detectable tendency toward YYY triplets

and certain branch point related triplets like TGA, TAA, ...”
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Signal Models IV: Maximum
Dependence Decomposition

Donor splice sites (5’ end of intron) show
dependencies between non-adjacent
positions, e.g. poor match at one end

compensated by strong match at other
end, 6 bp away

Model is basically a decision tree
Uses y? test to quantitate dependence
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All donor splice sites

(1254)
Pos A% C% G% U% Pos A% C% G% U%
3 33 36 19 13 / 3 35 44 16 6
-2 56 15 15 ) 85 4 5
4 9 4 9 Gs Hs -1 2 1 0
+3 44 3 3 (1057) (197) +3 81 3 3 2
+4 75 4 13 9 +4 51 28 9 12
+6 14 18 19 49 +6 22 20 30 28
3 34 37 18 I -3 29 31 21 18
29 59 10 15 16 2 43 30 17 1
+3 40 4 53 3 +3 56 0 43 0
+4 70 4 16 10 +4 93 2 3 3
+6 17 21 21 42 +6 5 10 10 76
5 37 42 18 3 3 29 30 I8 23
+3 39 5 51 5 +3 42 1 56 [
+4 62 5 22 I +4 80 4 8 8
+6 19 20 25 36 +6 14 21 16 49
i 32 40 93 5 -3 39 43 15 2
+3 27 4 59 10 +3 46 6 46 3
+4 51 5 25 19 +4 69 5 20 7
All sites: -------eeecemeeeececeeeeeeeee . Position ----e-emeemcmeeceeeeeceeeeee M any
Base -3 -2 -1 +1 +2 +3 +4 45 +6 dependencies,
4 4
A% 33 60 8 0 0 49 T (5 such as 5'/3

6
C% 37 13 0 0 3 7 5 19 Compensation
G% 18 14 (81) 100 0 45 12 8 20 !
U% 2 13 0 100 3 9 5 46 e.g. G4 vs Gs/Hs

UlsnBRNA: 3 G U € € A U U € A 5 48



v? test : Are events A & B

independent ?

not B
A 4 12
not A 6 8
10 10 20
\‘ 2 (observed —expected. )
L = i expected.

Event
counts
plus
marginals

“Expected” means expected assuming independence,
e.g. expect B 10/20; A 12/20; both 120/400*20 = 6, etc.

Significance: table look up (or approximate as normal)
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v? test for independence of
nucleotides in donor sites

ijCon j: -3 -2 -1 +3 +4 +5 +6( Sum
-3| c/a --- 61.8* 14.9 5.8 20.2* 11.2 18.0*| 131.8*
-2 A 115.6* --- 40.5* 20.3* 57.5*% 59.7* 42.9*%| 336.5%
-1] G 154 82.8*% --- 13.0 61.5*% 41.4* 96.6*| 310.8*
+3| a/g 8.6 17.5% 13.1 --- 19.3* 1.8 0.1 60.5*
+4| A 21.8* 56.0* 62.1* 64.1*  --- 56.8* 0.2 | 260.9%
+5| G 11.6 60.1* 41.9* 93.6* 146.6* ---  33.6*| 387.3*
+6| t 22.2* 40.7* 103.8*% 26.5* 17.8* 32.6* --- 243.6%*
‘\

* means chi-squared p-value < .001

Technically — build a 2 x 4 table for each (i,j) pair:
Pos i does/does not match consensus vs posjisA,C, G, T
calculate %2 as on previous slide, e.g. y? for+6 vs -1 = 103.8
If independent, you’d expect ¥? < 16.3 all but one in a 1000 times.
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Summary of Burge & Karlin

Coding DNA & control signals are
nonrandom

Weight matrices, WAMSs, etc. for controls
Codon frequency, MMs, etc. for coding

GHMM nice for overall architecture
Careful attention to small details pays
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Problems with BK training set

1 gene per sequence

Annotation errors

Single exon genes over-represented?
Highly expressed genes over-represented?

Moderate sized genes over-represented?
(none > 30 kb) ...

Similar problems with other training sets, too

(Of course we can now do better for human, mouse, etc., but
what about cockatoos or cows or endangered frogs, or ...)
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Problems with all methods

Pseudo genes (~ 14,000 in human)
Short ORFs

Sequencing errors

Non-coding RNA genes & spliced UTR’s
Overlapping genes

Alternative TSS/polyadenylation/splicing
Hard to find novel stuff — not in training

Species-specific weirdness — spliced leaders,
polycistronic transcripts, RNA editing...
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Other important ideas

Database search - does gene you're
predicting look anything like a known
protein? If that protein is an important
player in some pathway, are related
genes also present?

Comparative genomics - what does this
region look like in related organisms?

And of course — get experimental data
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