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Outline
Previously: Learning from data

  MLE: Max Likelihood Estimators
  EM: Expectation Maximization (MLE w/hidden data)

These Slides: 
    Bio: Expression & regulation

Expression: creation of gene products
Regulation: when/where/how much of each gene 
product; complex and critical

    Comp: using MLE/EM to find regulatory motifs in      
         biological sequence data
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Gene Expression & 
Regulation
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Gene Expression

Recall a gene is a DNA sequence for a protein 
To say a gene is expressed means that it

• is transcribed from DNA to RNA
• the mRNA is processed in various ways
• is exported from the nucleus (eukaryotes)
• is translated into protein

A key point: not all genes are expressed all the 
time, in all cells, or at equal levels
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Alberts, et al.

RNA 
Transcription
Some genes heavily transcribed 

(many are not)
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Regulation
In most cells, pro- or eukaryote, easily a 10,000-fold 
difference between least- and most-highly expressed 
genes
Regulation happens at all steps.  E.g., some genes are 
highly transcribed, some are not transcribed at all, 
some transcripts can be sequestered then released, 
or rapidly degraded, some are weakly translated, 
some are very actively translated, ...
All are important, but below, focus on 1st step only:  
  ✦ transcriptional regulation
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 E. coli growth 
on  glucose + lactose

http://en.wikipedia.org/wiki/Lac_operon
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(DNA)

(RNA)
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1965 Nobel Prize 
Physiology or Medicine

François Jacob,  Jacques Monod,  André Lwoff

1920-2013          1910-1976              1902-1994
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The sea urchin Strongylocentrotus purpuratus
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Sea Urchin - Endo16
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DNA Binding Proteins

A variety of DNA binding proteins (so-called 
“transcription factors”;  a significant fraction, 
perhaps 5-10%, of all human proteins) 
modulate transcription of protein coding genes
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The Double Helix

Los Alamos Science
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In the 
groove
Different 
patterns of 
potential H 
bonds at 
edges of 
different base 
pairs, 
accessible esp. 
in major 
groove
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Helix-Turn-Helix DNA Binding Motif
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H-T-H Dimers

Bind 2 DNA patches, ~ 1 turn apart
Increases both specificity and affinity
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(from lacZ ex.)



LacI Repressor + DNA
(a tetrameric HTH protein)

18https://en.wikipedia.org/wiki/Lac_operon; Image: SocratesJedi - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=17148773



Zinc Finger Motif
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Overheard at the Halloween Party

WWW.PHDCOMICS.COM
© Jorge Cham 10/29/2008
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Leucine Zipper Motif

Homo-/hetero-dimers 
and combinatorial 

control

Alberts, et al.
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MyoD

http://www.rcsb.org/pdb/explore/jmol.do?structureId=1MDY&bionumber=1
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Summary

Proteins can “bind” DNA to regulate gene 
expression (i.e., production of proteins, 
including themselves)

This is widespread

Complex, combinatorial control is both 
possible and commonplace
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Sequence Motifs
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Sequence Motifs
Motif:  “a recurring salient thematic element”

Last few slides described structural motifs in 
proteins

Equally interesting are the sequence motifs in 
DNA to which these proteins bind - e.g. , one 
leucine zipper dimer might bind (with varying 
affinities) to dozens or hundreds of similar 
sequences
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DNA binding site 
summary

Complex “code”

Short patches (4-8 bp)

Often near each other (1 turn = 10 bp)

Often reverse-complements (dimer symmetry)

Not perfect matches
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Example: E. coli Promoters

“TATA Box”  ~ 10bp upstream of 
transcription start
How to define it?

Consensus is TATAAT
BUT all differ from it
Allow k mismatches?
Equally weighted?
Wildcards like R,Y?  ({A,G}, {C,T}, resp.)

TACGAT
TAAAAT
TATACT
GATAAT
TATGAT
TATGTT
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E. coli Promoters
“TATA Box” - consensus TATAAT  
   ~10bp upstream of transcription start
Not exact: of 168 studied (mid 80’s)
– nearly all had 2/3 of TAxyzT
– 80-90% had all 3
– 50% agreed in each of x,y,z
– no perfect match

Other common features at -35, etc.
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TATA Box Frequencies

pos
base       1 2 3 4 5 6

A 2 95 26 59 51 1

C 9 2 14 13 20 3

G 10 1 16 15 13 0

T 79 3 44 13 17 96
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TATA Scores 
A “Weight Matrix Model” or “WMM”
pos

base       1 2 3 4 5 6

A -36 19 1 12 10 -46

C -15 -36 -8 -9 -3 -31

G -13 -46 -6 -7 -9 -46(?)

T 17 -31 8 -9 -6 19
score = 10 log2 foreground:background frequency ratio, rounded 30

Arbitrary



A -36 19 1 12 10 -46
C -15 -36 -8 -9 -3 -31
G -13 -46 -6 -7 -9 -46
T 17 -31 8 -9 -6 19

A -36 19 1 12 10 -46
C -15 -36 -8 -9 -3 -31
G -13 -46 -6 -7 -9 -46
T 17 -31 8 -9 -6 19

A -36 19 1 12 10 -46
C -15 -36 -8 -9 -3 -31
G -13 -46 -6 -7 -9 -46
T 17 -31 8 -9 -6 19

Scanning for TATA

Stormo, Ann. Rev. Biophys.  Biophys Chem, 17, 1988, 241-263

= -91

= -90

= 85

A C T A T A A T C G

A C T A T A A T C G

A C T A T A A T C G
31



Scanning for TATA 

A C T A T A A T C G A T C G A T G C T A G C A T G C G G A T A T G A T
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66

See also slide 64
32

PS: scores may appear arbitrary, but based on the assumptions  used to create the WMM, then can 
be easily converted into likelihood that sequence was drawn from foreground (e.g. "TATA") vs 
background (e.g. uniform) model. 



TATA Scan at 2 genes
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33 See slide 47



Score Distribution 
(Simulated)
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Weight Matrices: 
Statistics

Assume:

fb,i = frequency of base b in position i in TATA

fb  = frequency of base b in all sequences

Log likelihood ratio, given S = B1B2...B6:
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Neyman-Pearson

Given a sample x1, x2, ..., xn, from a distribution  
f(...|Θ) with parameter Θ, want to test 
hypothesis Θ = θ1 vs Θ = θ2.

Might as well look at likelihood ratio:

    f(x1, x2, ..., xn|θ1)  

    f(x1, x2, ..., xn|θ2) 

(or log likelihood ratio)

>  τ

36



Score Distribution 
(Simulated)
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What’s best WMM?

Given, say, 168 sequences s1, s2, ..., sk of length 6, 
assumed to be generated at random according 
to a WMM defined by 6 x (4-1) unknown 
parameters θ, what’s the best θ?

E.g., what’s MLE for θ given data s1, s2, ..., sk?

Answer: like coin flips or dice rolls, count 
frequencies per position.   (Possible HW?)
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Weight Matrices: 
Biophysics

Experiments show ~80% correlation of log 
likelihood weight matrix scores to measured 
binding energies  [Fields & Stormo, 1994]

I.e.,  “independence assumption” ⇒ probabilities 

multiply; log probabilities add, so

log prob ∝ energy ⇒ energies are ≈ additive
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ATG
ATG
ATG
ATG
ATG
GTG
GTG
TTG

Freq.  Col 1 Col 2 Col 3
A 0.625 0 0
C 0 0 0
G 0.25 0 1
T 0.125 1 0

LLR  Col 1 Col 2 Col 3
A 1.32 -∞ -∞
C -∞ -∞ -∞
G 0 -∞ 2
T -1 2 -∞

Another WMM example

log2
fxi,i

fxi

, fxi =
1
4

8 Sequences:

Log-Likelihood Ratio:
(uniform 
background)
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E. coli - DNA approximately 25%  A, C, G, T

M. jannaschi - 68% A-T,  32% G-C

LLR from previous  
example, assuming 

e.g., G in col 3 is 8 x more likely via WMM than 
background, so (log2) score = 3 (bits).

LLR  Col 1 Col 2 Col 3
A 0.74 -∞ -∞
C -∞ -∞ -∞
G 1 -∞ 3
T -1.58 1.42 -∞

Non-uniform Background

fA = fT = 3/8
fC = fG = 1/8
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Relative entropy 



AKA Kullback-Liebler Divergence,  
AKA Information Content

Given distributions P, Q 

Notes:  
   

Relative Entropy

H(P ||Q) =
∑

x∈Ω

P (x) log
P (x)
Q(x)

Undefined if 0 = Q(x) < P (x)

Let P (x) log
P (x)
Q(x)

= 0 if P (x) = 0 [since lim
y→0

y log y = 0]

≥ 0

Intuitively “distance”, 
but technically not, 
since it’s asymmetric

43
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• Intuition:  A quantitative measure of how much P “diverges” from 
Q.  (Think “distance,” but note it’s not symmetric.)
• If P ≈ Q everywhere, then log(P/Q) ≈ 0, so H(P||Q) ≈ 0
• But as they differ more, sum is pulled above 0 (next 2 slides)

• What it means quantitatively: Suppose you sample x, but aren’t 
sure whether you’re sampling from P (call it the “null model”) or 
from Q (the “alternate model”).  Then log(P(x)/Q(x)) is the log 
likelihood ratio of the two models given that datum.  H(P||Q) is 
the expected per sample contribution to the log likelihood ratio for 
discriminating between those two models.

• Exercise: if H(P||Q) = 0.1, say.  Assuming Q is the correct model, 
how many samples would you need to confidently (say, with 
1000:1 odds) reject P?

Relative Entropy
H(P ||Q) =

∑

x∈Ω

P (x) log
P (x)
Q(x)
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lnx ≤ x − 1

− lnx ≥ 1 − x
ln(1/x) ≥ 1 − x

lnx ≥ 1 − 1/x

0.5 1 1.5 2 2.5

-2
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(y = 1/x)
y y
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Theorem: H(P ||Q) ≥ 0

Furthermore:  H(P||Q) = 0 if and only if P = Q
Bottom line:  “bigger” means “more different”

H(P ||Q) =
∑

x P (x) log P (x)
Q(x)

≥
∑

x P (x)
(
1 − Q(x)

P (x)

)

=
∑

x(P (x) − Q(x))

=
∑

x P (x) −
∑

x Q(x)

= 1 − 1

= 0

Idea: if P ≠ Q, then

P(x)>Q(x) ⇒ log(P(x)/Q(x))>0 

and

P(y)<Q(y) ⇒ log(P(y)/Q(y))<0  

Q: Can this pull H(P||Q) < 0?  
A: No, as theorem shows.  
Intuitive reason: sum is 
weighted by P(x), which is 
bigger at the positive log ratios 
vs the negative ones.



Column-wise Rel. Ent.

For a WMM:

where Pi / Qi are the WMM / background 

distributions for column i.

Proof: exercise

Hint: Use the assumption of independence between 
WMM columns

47

H(P ||Q) =
∑

i H(Pi||Qi)



Freq.  Col 1 Col 2 Col 3
A 0.625 0 0
C 0 0 0
G 0.25 0 1
T 0.125 1 0

LLR  Col 1 Col 2 Col 3
A 1.32 -∞ -∞
C -∞ -∞ -∞
G 0 -∞ 2
T -1 2 -∞

RelEnt 0.7 2 2 4.7

LLR  Col 1 Col 2 Col 3
A 0.74 -∞ -∞
C -∞ -∞ -∞
G 1 -∞ 3
T -1.58 1.42 -∞

RelEnt 0.51 1.42 3 4.93

WMM Example, cont.

Uniform Non-uniform

48

fA = fT = 3/8
fC = fG = 1/8

0.625 * 1.32 0.826

0 * -∞ 0

0.25 * 0 0

0.125 * -1 -0.125

Total: 0.701

Example: R.E., Col 1   



WMM: How “Informative”? 
Mean score of site vs bkg?

For any fixed length sequence x, let 
P(x)  = Prob. of x according to WMM 
Q(x) = Prob. of x according to background
Relative Entropy: 

H(P||Q) is expected log likelihood score of a 
sequence randomly chosen from WMM (wrt background);  

-H(Q||P) is expected score of Background (wrt WMM)

Expected score difference: H(P||Q) + H(Q||P) 

H(P ||Q) =
∑

x∈Ω

P (x) log2
P (x)
Q(x)

H(P||Q)-H(Q||P)
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WMM Scores vs 
Relative Entropy
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-H(Q||P) = -6.8

H(P||Q) = 5.0

On average, foreground model scores > background by 11.8 bits 
(score difference of 118 on 10x scale used in examples above).   

211.8 ≈ 3566, which is good, since many more non-TATA than TATA 50
See slide 32



Pseudocounts

Are the -∞’s a problem?
Are you certain that a given residue never 
occurs in a given pos?  Then -∞ just right.
Else, it may be a small-sample artifact

Typical fix: add a pseudocount to each observed 
count–small constant (often 1.0; but needn't be) 

Sounds ad hoc; there is a Bayesian justification
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WMM Summary

Weight Matrix Model (aka Position Weight Matrix, PWM, Position 
Specific Scoring Matrix, PSSM, “possum”, 0th order Markov model)

One (of many) ways to summarize the observed/allowed 
variability in a set of related, fixed-length sequences

Simple statistical model; assumes independent positions
To build: count (+ pseudocount) letter frequency per 

position, log likelihood ratio to background
To scan: add LLRs per position, compare to threshold
Generalizations to higher order models (i.e., letter 

frequency per position, conditional on neighbor) also 
possible, with enough training data (kth order MM)
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How-to Questions

Given aligned motif instances, build model?
Frequency counts (above, maybe w/ pseudocounts)

Given a model, find (probable) instances
Scanning, as above

Given unaligned strings thought to contain a 
motif, find it?  (e.g., upstream regions of co-
expressed genes)

Hard ... rest of lecture.
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Motif Discovery
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Motif Discovery

Based on the above, a natural 
approach to motif discovery, 
given, say, unaligned upstream 
sequences of genes thought to 
be co-regulated, is to find a set of 
subsequences of max relative 
entropy

55

cgatcTACGATaca…
  tagTAAAATtttc…
 ccgaTATACTcc…
   ggGATAATgagg…
 gactTATGATaa…
   ccTATGTTtgcc…

Unfortunately, this is NP-hard [Akutsu]



Motif Discovery:  
4 example approaches

Brute Force

Greedy search

Expectation Maximization

Gibbs sampler

56



Brute Force
Input:

Motif length L, plus sequences s1, s2, ..., sk (all of length n+L-1, 
say), each with one instance of an unknown motif

Algorithm:
Build all k-tuples of length L subsequences, one from each of 
s1, s2, ..., sk (nk such tuples)
Compute relative entropy of each
Pick best
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Brute Force, II
Input:

Motif length L, plus seqs s1, s2, ..., sk (all of length n+L-1, say), 
each with one instance of an unknown motif

Algorithm in more detail:

Build singletons: each len L subseq of each s1, s2, ..., sk (nk sets)

Extend to pairs: len L subseqs of each pair of seqs (n2(  ) sets)

Then triples:  len L subseqs of each triple of seqs (n3(  ) sets)

Repeat until all have k sequences (nk(  ) sets)

(n+1)k in total; compute relative entropy of each; pick best
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a 
sl

oo
oo

w

k
2

k
3

k
k
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Example

Three sequences (A, B, C), each with  
two possible motif positions (0,1)

A0 A1 B0 B1 C0 C1

A0,B0 A0,B1 A0, C0 A0, C1 A1, B0 A1, B1 A1,C0 A1, C1 B0, C0 B0, C1 B1,C0 B1,C1

∅

A0, B0, 
C0

A0, B0, 
C1

A0, B1, 
C0

A0, B1, 
C1

A1, B0, 
C0

A1, B0, 
C1

A1, B1, 
C0

A1, B1, 
C1

59
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Greedy Best-First 
[Hertz, Hartzell & Stormo, 1989, 1990]

Input:
Sequences s1, s2, ..., sk; motif length L; 

“breadth” d, say d = 1000
Algorithm:

As in brute, but discard all but best d  
relative entropies at each stage

us
ua

l  
“g

re
ed

y”
  p

ro
bl

em
s

X

XX

d=
2
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Yi,j =
{

1 if motif in sequence i begins at position j
0 otherwise

Expectation Maximization 
[MEME, Bailey & Elkan, 1995]

Input (as above):
Sequences s1, s2, ..., sk; motif length L; background 
model; again assume one instance per sequence 
(variants possible)

Algorithm: EM
Visible data: the sequences
Hidden data: where’s the motif 

Parameters θ: The WMM
61

Note: Goal is MLE for θ. But 
how do we assign likelihoods 
to the observed data si? 
Assume the length L motif 
instance is generated by θ, & 
the rest ~ background.



MEME Outline
Parameters θ = an unknown WMM
Typical EM algorithm:

Use parameters θ(t)
 at tth iteration to estimate where 

the motif instances are (the hidden variables)

Use those estimates to re-estimate the parameters θ 
to maximize likelihood of observed data, giving θ(t+1)

Repeat

Key: given a few good matches to best motif, 
expect to pick more
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Cartoon Example

63

CATGACTAGCATAATCCGAT
TATAATTTCCCAGGGATAACA
TACAATAGGACCATAGAATGCGC

xATAyz

xATAAz
CATGACTAGCATAATCCGAT
TATAATTTCCCAGGGATAACA
TACAATAGGACCATAGAATGCGC

TAtAAT
    CATGACTAGCATAATCCGAT
             TATAATTTCCCAGGGATAACA
TACAATAGGACCATAGAATGCGC

CATAAT
CATGAC
GATAAC
TATAAT
CATAGA
TAGAAT
AATAGG
xATAAz

CATAAT
GATAAC
TATAAT
TAGAAT
TACAAT
TAtAAT

1

1/3

2/3

1/2

1/2

A further nuance: if some subseqs 
are a better fit to current model than 
others, we can up-weight their 
contribution to the next model



Ŷi,j = E(Yi,j | si, θt)

= P (Yi,j = 1 | si, θt)

= P (si | Yi,j = 1, θt)P (Yi,j=1|θt)
P (si|θt)

= cP (si | Yi,j = 1, θt)

= c′
∏l

k=1 P (si,j+k−1 | θt)

where c′ is chosen so that
∑

j Ŷi,j = 1.

E = 0 · P (0) + 1 · P (1)

Bayes

Expectation Step 
(where are the motif instances?)

1 3 5 7 9 11 ...

Ŷi,j}∑j =1

Recall slide 32

64

Seq i Pos j 

= c′′ 2s, s=∑(log(foregrnd/backgrnd)), i.e. WMM/θ-score @i,j



Q(θ | θt) = EY ∼θt [log P (s, Y | θ)]

= EY ∼θt [log
∏k

i=1 P (si, Yi | θ)]

= EY ∼θt [
∑k

i=1 log P (si, Yi | θ)]

= EY ∼θt [
∑k

i=1

∑|si|−l+1
j=1 Yi,j log P (si, Yi,j = 1 | θ)]

= EY ∼θt [
∑k

i=1

∑|si|−l+1
j=1 Yi,j log(P (si | Yi,j = 1, θ)P (Yi,j = 1 | θ))]

=
∑k

i=1

∑|si|−l+1
j=1 EY ∼θt [Yi,j ] log P (si | Yi,j = 1, θ) + C

=
∑k

i=1

∑|si|−l+1
j=1 Ŷi,j log P (si | Yi,j = 1, θ) + C

Maximization Step 
(what is the motif?)

Expected log likelihood, as a function of θ (the WMM): 

65

From E-Step

Goal: find θ maximizing Q(θ|θt)



θt+1 = arg maxθ Q(θ | θt)

Exercise: Show this is 
maximized by setting θ  to 
“count” letter freqs over all 
possible motif instances, with 
counts weighted by      , again 
the “obvious” thing.

Intuition: vary θ to emphasize the 
subseqs with largest      's

M-Step (cont.)
Q(θ | θt) =

∑k
i=1

∑|si|−l+1
j=1 Ŷi,j log P (si | Yi,j = 1, θ) + C

66

s1 : ACGGATT. . .
. . .

sk : GC. . . TCGGAC

Ŷ1,1 ACGG
Ŷ1,2 CGGA
Ŷ1,3 GGAT

...
...

Ŷk,l−1 CGGA
Ŷk,l GGAC

k,|sk |-l

k,|sk |-l+1

Ŷi,j

Ŷi,j



Initialization

1. Try many/every motif-length substring, and 
use as initial θ a WMM with, say, 80% of 
weight on that sequence, rest uniform

2. Run a few iterations of each

3. Run best few to convergence

(Having a supercomputer helps) 
http://meme-suite.org

67

e.g., by relative 
entropy 



Sequence Logos
A WMM Vizualization
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TATA Box Frequencies

pos
base       1 2 3 4 5 6

A 2 95 26 59 51 1

C 9 2 14 13 20 3

G 10 1 16 15 13 0

T 79 3 44 13 17 96

6924-dimensional data to visualize; are you OK with that?



TATA Sequence Logo

1 2 3 4 5 6

A 2 95 26 59 51 1

C 9 2 14 13 20 3

G 10 1 16 15 13 0

T 79 3 44 13 17 96
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MEME:  What Data?

Upstream regions of many genes (find widely 
shared motifs, like TATA)

Upstream regions of co-regulated genes (find 
shared, but more specific, motifs involved in 
that regulation, e.g., "glucose starvation" in E. coli)

ChIP seq data (find motifs bound by specific 
proteins)  (slide 90) 
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The Gibbs Sampler 

Lawrence, et al.  “Detecting Subtle Sequence Signals:  A 
Gibbs Sampling Strategy for Multiple Sequence 

Alignment,” Science 1993

Another Motif 
Discovery Approach
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Geman & Geman, IEEE PAMI 1984

Hastings, Biometrika, 1970

Metropolis, Rosenbluth, Rosenbluth, Teller & 
Teller, “Equations of State Calculations by Fast 
Computing Machines,” J. Chem. Phys. 1953

Josiah Williard Gibbs, 1839-1903,  American 
physicist, a pioneer of thermodynamics

Some History
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An old problem: 
k random variables:
Joint distribution (p.d.f.): 
Some function:     
Want Expected Value:

x1, x2, . . . , xk

P (x1, x2, . . . , xk)

E(f(x1, x2, . . . , xk))
f(x1, x2, . . . , xk)

How to Average

76



Approach 1: direct integration  
   (rarely solvable analytically, esp. in high dim)
Approach 2: numerical integration  
   (often difficult, e.g., unstable, esp. in high dim)
Approach 3: Monte Carlo integration 
    sample                                   and average:

E(f(x1, x2, . . . , xk)) =∫

x1

∫

x2

· · ·
∫

xk

f(x1, x2, . . . , xk) · P (x1, x2, . . . , xk)dx1dx2 . . . dxk

E(f(!x)) ≈ 1
n

∑n
i=1 f(!x(i))

!x(1), !x(2), . . . !x(n) ∼ P (!x)

How to Average
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Independent sampling also often hard, but not 
required for expectation
MCMC                                 w/ stationary dist = P

Simplest & most common: Gibbs Sampling 

Algorithm 
for t = 1 to ∞ 
   for i = 1 to k do : 

P (xi | x1, x2, . . . , xi−1, xi+1, . . . , xk)

xt+1,i ∼ P (xt+1,i | xt+1,1, xt+1,2, . . . , xt+1,i−1, xt,i+1, . . . , xt,k)

t+1    t

!Xt+1 ∼ P ( !Xt+1 | !Xt)

Markov Chain Monte 
Carlo (MCMC)
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1 3 5 7 9 11 ...

Sequence i

Ŷi,j
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Input: again assume sequences s1, s2, ..., sk with 

one length w motif per sequence

Motif model:  WMM

Parameters:  Where are the motifs? 
for 1 ≤ i ≤ k, have 1 ≤ xi ≤ |si|-w+1
“Full conditional”:  to calc 

build WMM from motifs in all sequences 
except i, then calc prob that motif in ith seq 
occurs at j by usual “scanning” alg.  

P (xi = j | x1, x2, . . . , xi−1, xi+1, . . . , xk)
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Randomly initialize xi’s 

for t = 1 to ∞ 
   for i = 1 to k  
      discard motif instance from si;  

      recalc WMM from rest 
      for j = 1 ... |si|-w+1 

         calculate prob that ith motif is at j: 

         pick new xi according to that distribution 

Similar to 
MEME, but it 
would 
average over, 
rather than 
sample from

P (xi = j | x1, x2, . . . , xi−1, xi+1, . . . , xk)

Overall Gibbs Alg

81



Burnin - how long must we run the chain to 
reach stationarity?

Mixing - how long a post-burnin sample must 
we take to get a good sample of the stationary 
distribution?  In particular:

Samples are not independent; may not  
“move” freely through the sample space
E.g., may be many isolated modes

Issues
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“Phase Shift” - may settle on suboptimal 
solution that overlaps part of motif. Periodically 
try moving all motif instances a few spaces left 
or right.

Algorithmic adjustment of pattern width: 
Periodically add/remove flanking positions to 
maximize (roughly) average relative entropy 
per position

Multiple patterns per string

Variants & Extensions
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13 tools

Real ‘motifs’ (Transfac)

56 data sets (human, mouse, fly, yeast)

‘Real’, ‘generic’, ‘Markov’

Expert users, top prediction only

“Blind” – sort of

Methodology
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*     *     $    *     ^     ^     ^         *                    *
$ Greed
* Gibbs
^ EM
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Lessons
Evaluation is hard (esp. when “truth” is unknown)

Accuracy low

partly reflects limitations in evaluation 
methodology (e.g. ≤ 1 prediction per data set; 
results better in synth data)

partly reflects difficult task, limited knowledge (e.g. 
yeast > others)

No clear winner re methods or models
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ChIP-seq
Chromatin ImmunoPrecipitation 

Sequencing
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ChIP-seq
How to find where a transcription factor binds to DNA?
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http://res.illumina.com/images/technology/chip_seq_assay_lg.gif

Transcription 
factors, e.g., 
bind DNA
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DNA 
fragmentation 
gives chunks of 
a few hundred 
bases. Seq gives 
~50-100 bp read 
@ left (red) and 
right (blue) ends 
of frags.  Map to 
genome.

"Pile up" mapped 
locs.

TF binding site 
probably middle 
thereof.

Over many such 
sites, infer 
binding motif.



TF Binding Site Motifs 
From ChIPseq

LOTS of data

E.g. 103–105 sites, hundreds of reads each  
(plus perhaps even more nonspecific)

Motif variability

Co-factor binding sites
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flanking preference of CAGCTG E-box of these factors
(Fig. 4 B3).

3.3 Application to cell type specific accessible sites

Discriminative motif analysis can be applied to any high-
throughput sequence datasets besides ChIP-Seq data. We used
this method to identify key TFs that are involved in regulation of
cell type-specific chromatin remodeling using DNaseI hypersen-
sitivity data. We collected 211 DNaseI hypersensitivity datasets
from the ENCODE Web site. Combining highly similar ones
yielded 77 profiles. We defined cell type-specific accessible sites

as the sites that are shared by !5 profiles. To predict motifs in
each set of cell type specific sites, we chose background as the
random sampling of the cell type-specific sites in all cell types
that do not overlap with the foreground. The predicted motifs
for a set of well-studied cell types are shown in Figure 5 (full
results in Supplementary Table S4). We found many key TFs
that are known to regulate the given cell type. For example, we
found motifs for Oct4 (annotated as Pou2f2), Sox2 and GC-rich
motifs that mimic KLF4 (annotated as MZF1 and ASCL2) in
Nt2d1, an embryonic cell line. All these factors are well known to
be markers of cell pluripotency. We found motifs for IRF1 in B
cells, a key factor for immune response. In various lymphocyte
cells, we found motifs for E2A (annotated as TCFE2A), Runx
and ETS family TFs (annotated as SPIB, ELF5, SFPI1), all of
which are critical immune system regulators. For various differ-
ential epithelial cells in kidney, colon, lung, breast, pancrease and
prostate, FOX family motifs are dominant and motifs for HNF
family are enriched in kidney and colon. Similarly, we found
significant enrichment of various Homeobox, NeuroD and
Zic2 motifs in nervous system and MyoD motifs in skeletal
muscle. A recent ENCODE study (Neph et al., 2012) used
motifs in curated databases or de novo predicted motifs to scan
accessible regions and compute enrichment in the given cell type.
We offer a more direct alternative by combining motif prediction
and discriminative analysis. The predicted motifs are conse-
quently optimized to highlight the distinction between fore-
ground and background, thus likely to be more informative in
this setting.

3.4 Motif significance and sample size

We have shown that our method can discover biologically rele-
vant motifs in a wide range of biological samples and application
settings. Here, we also give evidence that the z-value calculated
by our software is a true indication of a motif’s statistical signifi-
cance, and that the method is robust to variation in sample size
and motif enrichment level. To quantify motif significance, we
use the z-value statistic from the logistic regression model as the
‘motif score.’ To test its validity, we performed the following
experiment on the MyoD ChIP-seq dataset: we randomly
sampled 1–64K sequences from the combined foreground and
background datasets and then randomly permuted the class
labels within each sample. We repeated the permutation
5 times. The z-values for all enumerated 6mers in each permuta-
tion are approximately normally distributed, as shown by quan-
tile–quantile plots (Supplementary Fig. S5A), indicating an
accurate reflection of true statistical significance.
To determine how the z-scores of enriched motifs change with

sample size, we plotted the distribution of z-values for all 6mers
using samples from 1 to 64K, and highlight CAGCTG, which is
identified as the most significant 6mer using all the data.
CAGCTG is consistently the most significant motif for each
sample size (Fig. 6A), and the motif score is linear with the
square root of the sample size (Supplementary Fig. S5B), in
accord with the central limit theorem. We also tested how the
motif scores correlate with motif enrichment level. For each sam-
pling with size from 1 to 64K, we randomly kept 20, 40 to 100%
of the original foreground samples and replaced the remaining
foreground sequences with background sequences while keeping

Fig. 4. Predicting the specificity of similar bHLH TFs. (A1) Predicted
PWMs for MyoD (left) and NeuroD2 (right), (A2) Discriminative motifs
based on direct comparison of MyoD sites (foreground) with NeuroD2
sites (background), suggesting MyoD and NeuroD2 preferred ebox and
cofactor motifs. (B1 and B2) Comparison of MyoD and MSC. Similar to
A1 and A2. (B3) Gel shift demonstrating that MSC/E12 heterodimer
binds strongly at CCAGCTGG and MyoD/E12 binds weakly, whereas
GCAGCTGC binds strongly to both MyoD/E12 and MSC/E12. MSC
homodimer also binds stronger at CCAGCTGG than GCAGCTGC
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flanking preference of CAGCTG E-box of these factors
(Fig. 4 B3).

3.3 Application to cell type specific accessible sites

Discriminative motif analysis can be applied to any high-
throughput sequence datasets besides ChIP-Seq data. We used
this method to identify key TFs that are involved in regulation of
cell type-specific chromatin remodeling using DNaseI hypersen-
sitivity data. We collected 211 DNaseI hypersensitivity datasets
from the ENCODE Web site. Combining highly similar ones
yielded 77 profiles. We defined cell type-specific accessible sites

as the sites that are shared by !5 profiles. To predict motifs in
each set of cell type specific sites, we chose background as the
random sampling of the cell type-specific sites in all cell types
that do not overlap with the foreground. The predicted motifs
for a set of well-studied cell types are shown in Figure 5 (full
results in Supplementary Table S4). We found many key TFs
that are known to regulate the given cell type. For example, we
found motifs for Oct4 (annotated as Pou2f2), Sox2 and GC-rich
motifs that mimic KLF4 (annotated as MZF1 and ASCL2) in
Nt2d1, an embryonic cell line. All these factors are well known to
be markers of cell pluripotency. We found motifs for IRF1 in B
cells, a key factor for immune response. In various lymphocyte
cells, we found motifs for E2A (annotated as TCFE2A), Runx
and ETS family TFs (annotated as SPIB, ELF5, SFPI1), all of
which are critical immune system regulators. For various differ-
ential epithelial cells in kidney, colon, lung, breast, pancrease and
prostate, FOX family motifs are dominant and motifs for HNF
family are enriched in kidney and colon. Similarly, we found
significant enrichment of various Homeobox, NeuroD and
Zic2 motifs in nervous system and MyoD motifs in skeletal
muscle. A recent ENCODE study (Neph et al., 2012) used
motifs in curated databases or de novo predicted motifs to scan
accessible regions and compute enrichment in the given cell type.
We offer a more direct alternative by combining motif prediction
and discriminative analysis. The predicted motifs are conse-
quently optimized to highlight the distinction between fore-
ground and background, thus likely to be more informative in
this setting.

3.4 Motif significance and sample size

We have shown that our method can discover biologically rele-
vant motifs in a wide range of biological samples and application
settings. Here, we also give evidence that the z-value calculated
by our software is a true indication of a motif’s statistical signifi-
cance, and that the method is robust to variation in sample size
and motif enrichment level. To quantify motif significance, we
use the z-value statistic from the logistic regression model as the
‘motif score.’ To test its validity, we performed the following
experiment on the MyoD ChIP-seq dataset: we randomly
sampled 1–64K sequences from the combined foreground and
background datasets and then randomly permuted the class
labels within each sample. We repeated the permutation
5 times. The z-values for all enumerated 6mers in each permuta-
tion are approximately normally distributed, as shown by quan-
tile–quantile plots (Supplementary Fig. S5A), indicating an
accurate reflection of true statistical significance.
To determine how the z-scores of enriched motifs change with

sample size, we plotted the distribution of z-values for all 6mers
using samples from 1 to 64K, and highlight CAGCTG, which is
identified as the most significant 6mer using all the data.
CAGCTG is consistently the most significant motif for each
sample size (Fig. 6A), and the motif score is linear with the
square root of the sample size (Supplementary Fig. S5B), in
accord with the central limit theorem. We also tested how the
motif scores correlate with motif enrichment level. For each sam-
pling with size from 1 to 64K, we randomly kept 20, 40 to 100%
of the original foreground samples and replaced the remaining
foreground sequences with background sequences while keeping

Fig. 4. Predicting the specificity of similar bHLH TFs. (A1) Predicted
PWMs for MyoD (left) and NeuroD2 (right), (A2) Discriminative motifs
based on direct comparison of MyoD sites (foreground) with NeuroD2
sites (background), suggesting MyoD and NeuroD2 preferred ebox and
cofactor motifs. (B1 and B2) Comparison of MyoD and MSC. Similar to
A1 and A2. (B3) Gel shift demonstrating that MSC/E12 heterodimer
binds strongly at CCAGCTGG and MyoD/E12 binds weakly, whereas
GCAGCTGC binds strongly to both MyoD/E12 and MSC/E12. MSC
homodimer also binds stronger at CCAGCTGG than GCAGCTGC
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Motif Discovery 
Summary

Important problem: a key to understanding gene regulation
Hard problem: short, degenerate signals amidst much noise
Many variants have been tried, for representation, search, 
and discovery.  We looked at only a few:

Weight matrix models for representation & search
Relative Entropy for evaluation/comparison
Greedy, MEME and Gibbs for discovery

Still room for improvement.  E.g., ChIP-seq and Comparative 
genomics (cross-species comparison) are very promising.
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