CSE 427 Autumn 2021

Motifs: Representation & Discovery

Outline

Previously: Learning from data

MLE: Max Likelihood Estimators

EM: Expectation Maximization (MLE w/hidden data)

These Slides:

Bio: Expression & regulation

Expression: creation of gene products

Regulation: when/where/how much of each gene product; complex and critical

Comp: using MLE/EM to find regulatory motifs in biological sequence data

Gene Expression & Regulation

Gene Expression

Recall a gene is a DNA sequence for a protein To say a gene is expressed means that it

- is transcribed from DNA to RNA
- the mRNA is processed in various ways
- is exported from the nucleus (eukaryotes)
- is translated into protein

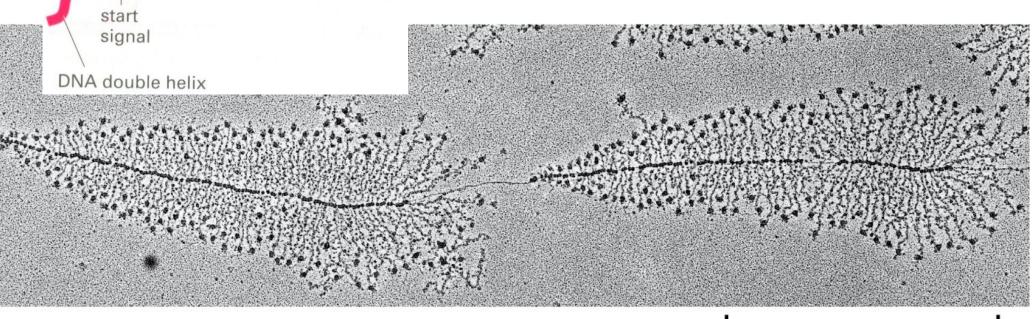
A key point: not all genes are expressed all the time, in all cells, or at equal levels

attached RNA transcript direction of polymerase movement and RNA chain growth RNA polymerase start signal DNA double helix

RNA Transcription

Some genes heavily transcribed (many are not)

1 μm



Regulation

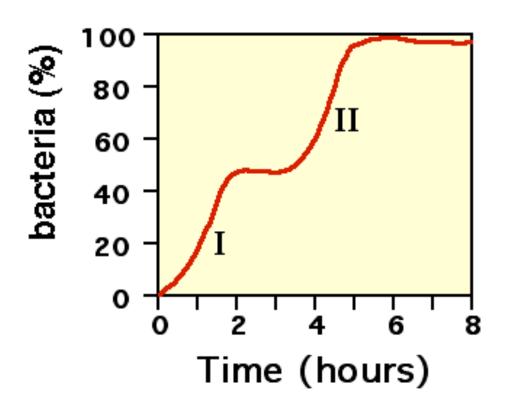
In most cells, pro- or eukaryote, easily a 10,000-fold difference between least- and most-highly expressed genes

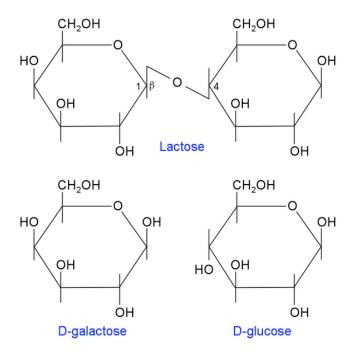
Regulation happens at all steps. E.g., some genes are highly transcribed, some are not transcribed at all, some transcripts can be sequestered then released, or rapidly degraded, some are weakly translated, some are very actively translated, ...

All are important, but below, focus on 1st step only:

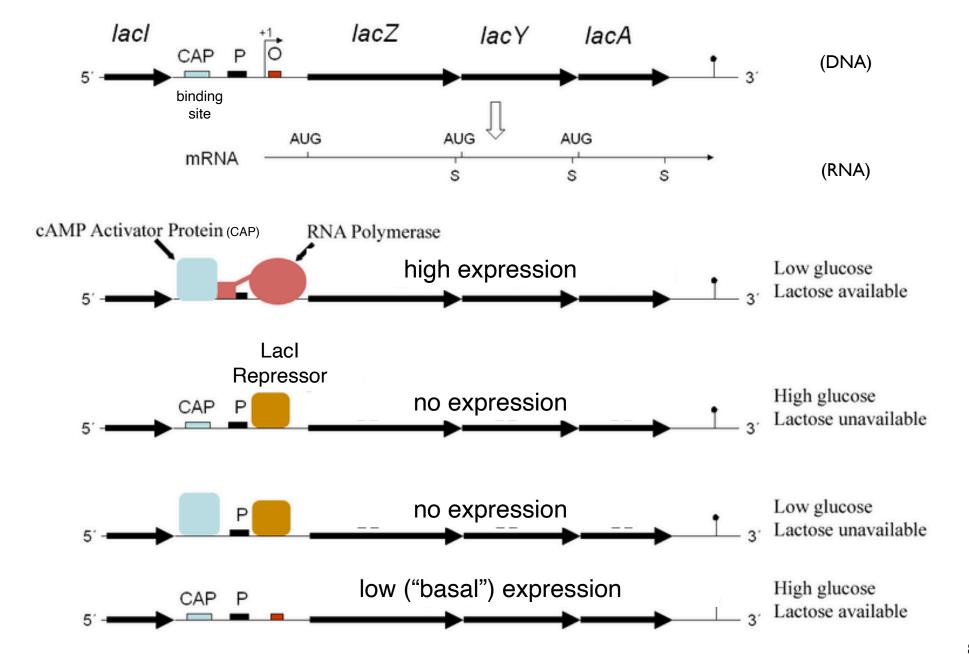
transcriptional regulation

E. coli growth on glucose + lactose





The lac Operon and its Control Elements

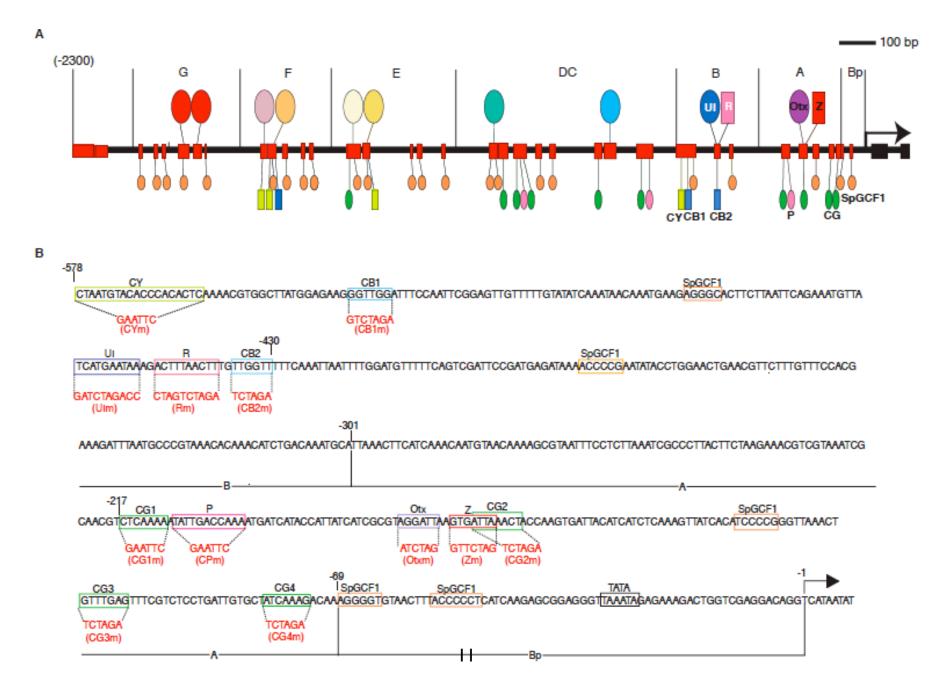


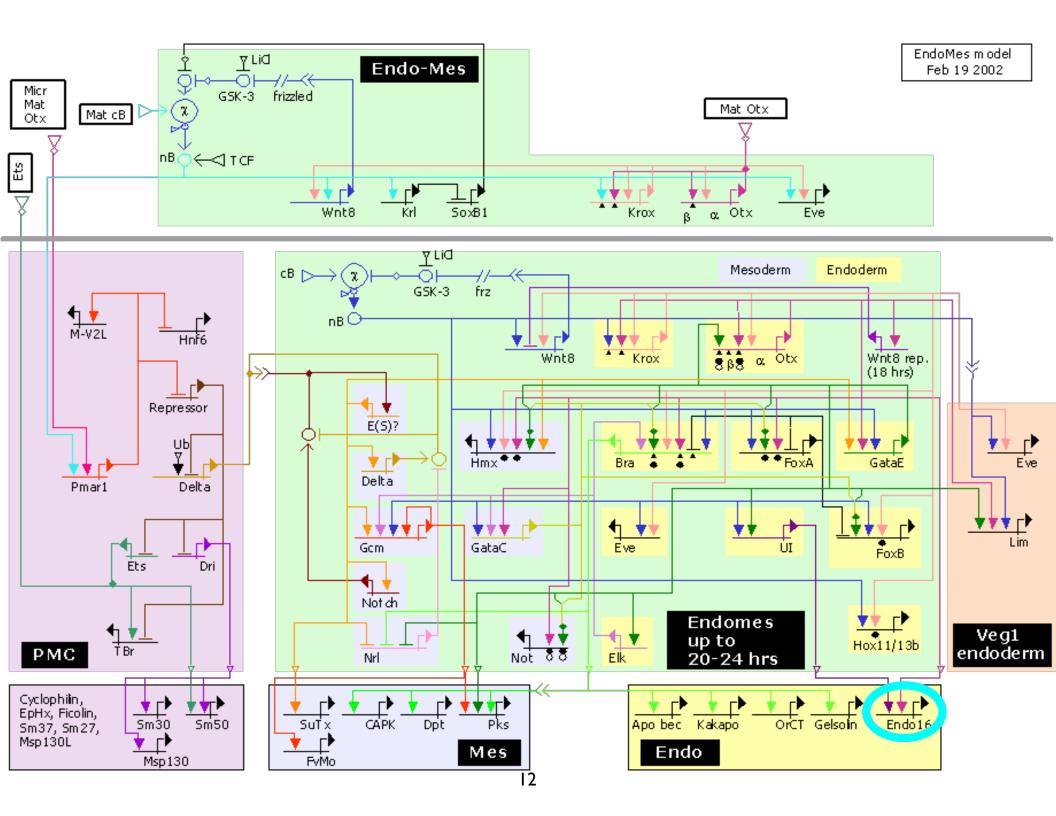
1965 Nobel Prize

Physiology or Medicine

François Jacob, Jacques Monod, André Lwoff
1920-2013 1910-1976 1902-1994

Sea Urchin - Endo 16

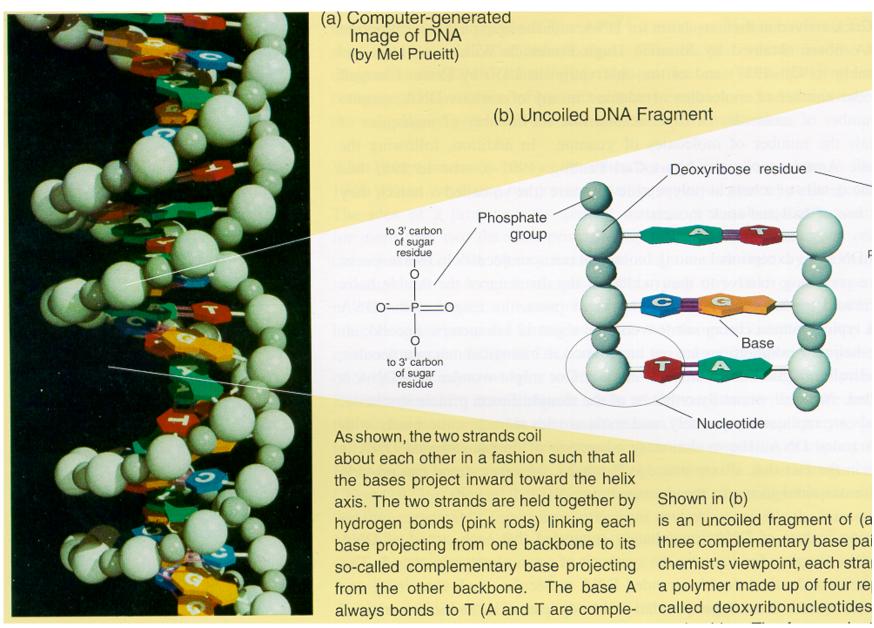




DNA Binding Proteins

A variety of DNA binding proteins (so-called "transcription factors"; a significant fraction, perhaps 5-10%, of all human proteins) modulate transcription of protein coding genes

The Double Helix



In the groove

Different patterns of potential H bonds at edges of different base pairs, accessible esp. in major groove

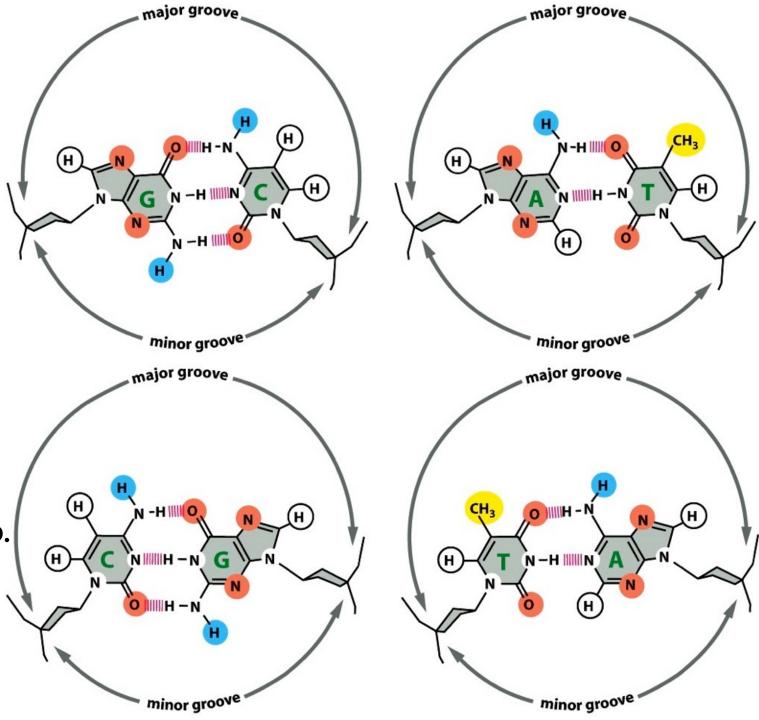
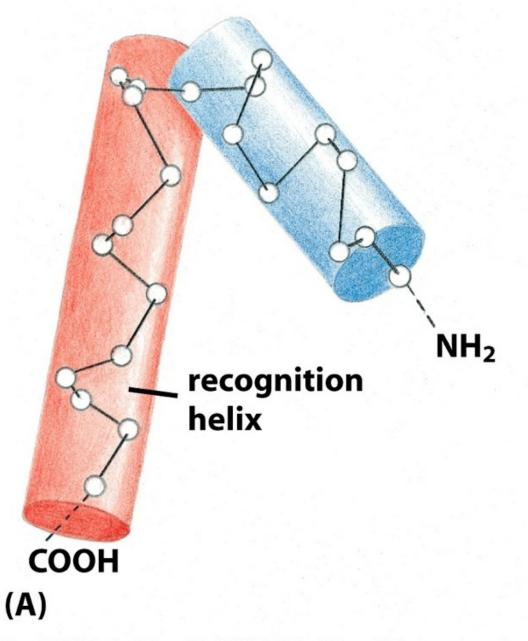
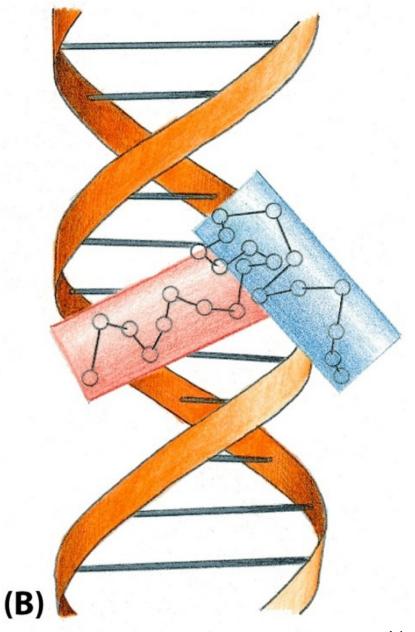


Figure 7-7 Molecular Biology of the Cell 5/e (© Garland Science 2008)

Helix-Turn-Helix DNA Binding Motif





H-T-H Dimers

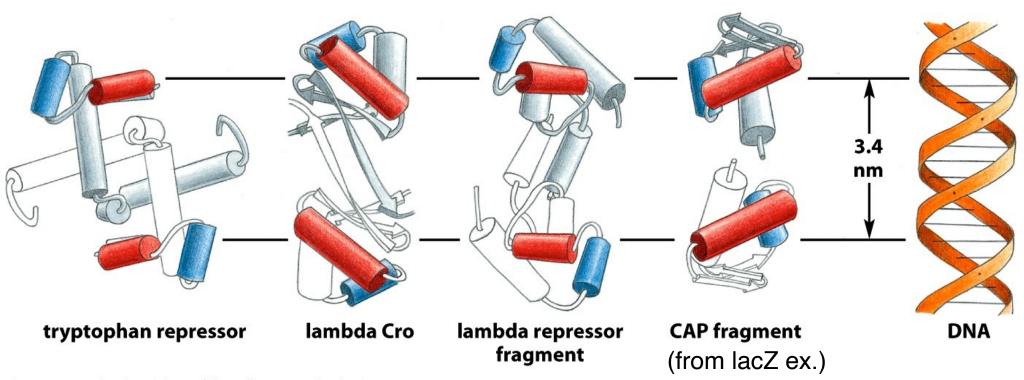
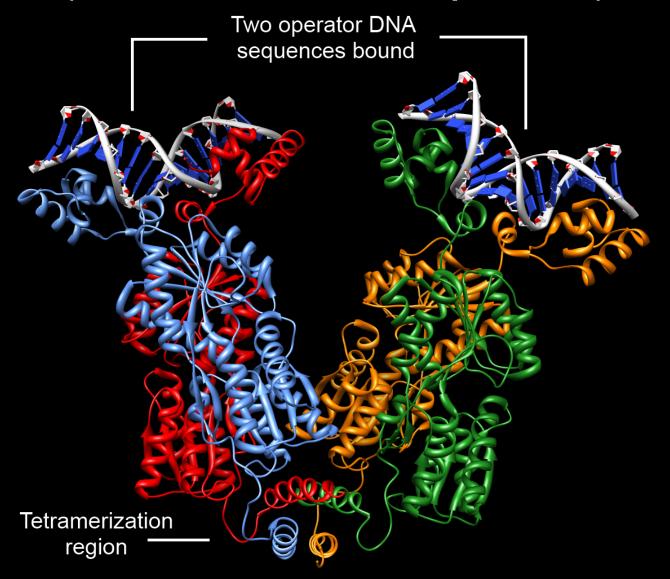


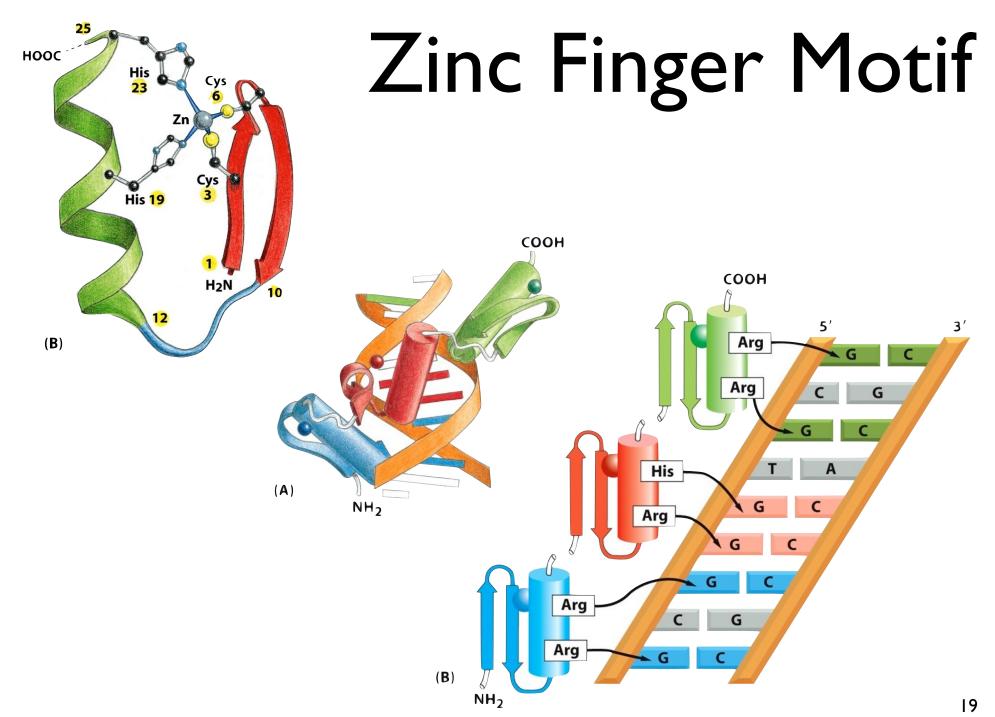
Figure 7-11 Molecular Biology of the Cell 5/e (© Garland Science 2008)

Bind 2 DNA patches, ~ I turn apart Increases both specificity and affinity

Lacl Repressor + DNA

(a tetrameric HTH protein)

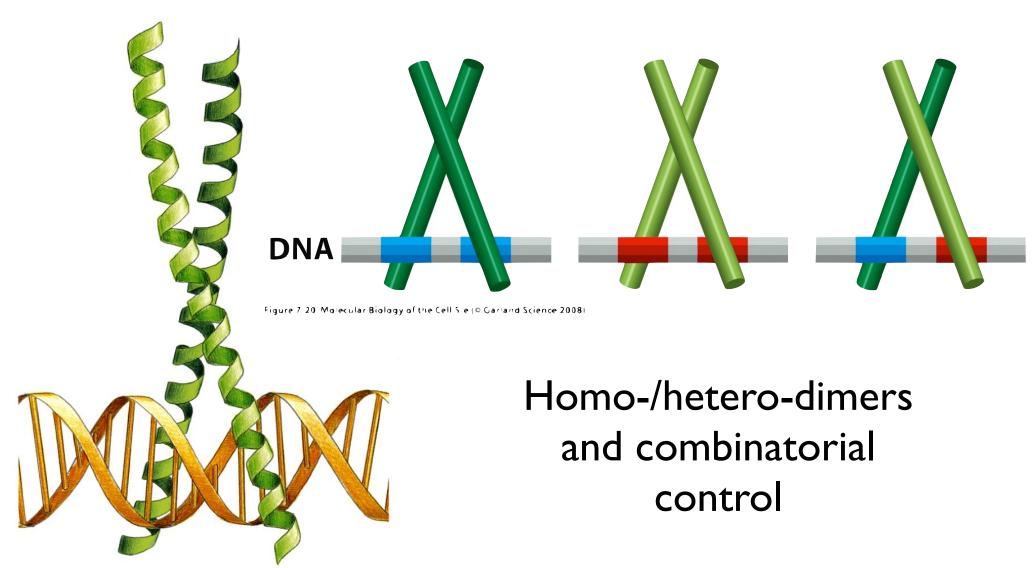




Overheard at the Halloween Party

© Jorge Cham 10/29/2008

Leucine Zipper Motif



http://www.rcsb.org/pdb/explore/jmol.do?structureId=IMDY&bionumber=I

Summary

Proteins can "bind" DNA to regulate gene expression (i.e., production of proteins, including themselves)

This is widespread

Complex, combinatorial control is both possible and commonplace

Sequence Motifs

Sequence Motifs

Motif: "a recurring salient thematic element"

Last few slides described structural motifs in proteins

Equally interesting are the sequence motifs in DNA to which these proteins bind - e.g., one leucine zipper dimer might bind (with varying affinities) to dozens or hundreds of similar sequences

DNA binding site summary

Complex "code"

Short patches (4-8 bp)

Often near each other (I turn = 10 bp)

Often reverse-complements (dimer symmetry)

Not perfect matches

Example: E. coli Promoters

"TATA Box" ~ 10bp upstream of

transcription start

How to define it?

Consensus is TATAAT

BUT all differ from it

Allow k mismatches?

Equally weighted?

Wildcards like R,Y? ({A,G}, {C,T}, resp.)

TACGAT

TAAAAT

TATACT

GATAAT

TATGAT

TATGTT

E. coli Promoters

- "TATA Box" consensus TATAAT
- ~10bp upstream of transcription start Not exact: of 168 studied (mid 80's)
 - nearly all had 2/3 of TAxyzT
 - 80-90% had all 3
 - 50% agreed in each of x,y,z
 - no perfect match
 her common features at -35, etc.

TATA Box Frequencies

pos	1	2	3	4	5	6
Α	2	95	26	59	51	1
С	9	2	14	13	20	3
G	10	1	16	15	13	0
T	79	3	44	13	17	96

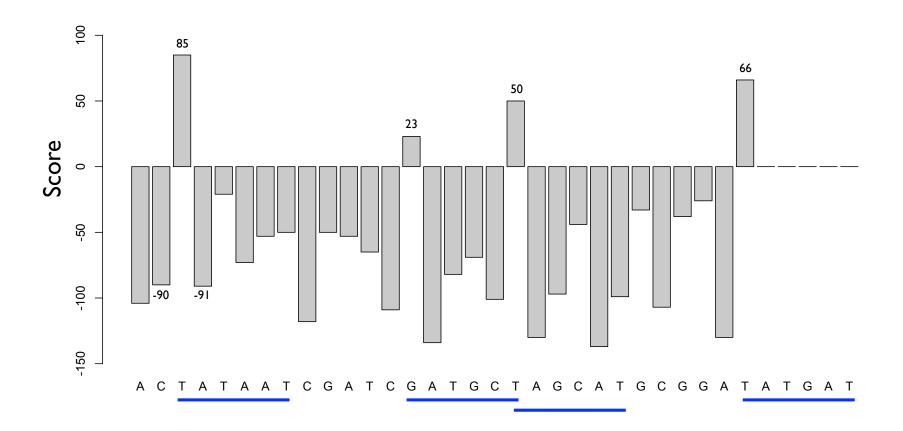
TATA Scores

A "Weight Matrix Model" or "WMM"

pos	1	2	3	4	5	6
Α	-36	19	1	12	10	-46
С	-15	-36	-8	-9	- 3	-31
G	-13	-46	-6	-7	-9	-46(?)
T	17	-31	8	-9	-6	19

Scanning for TATA

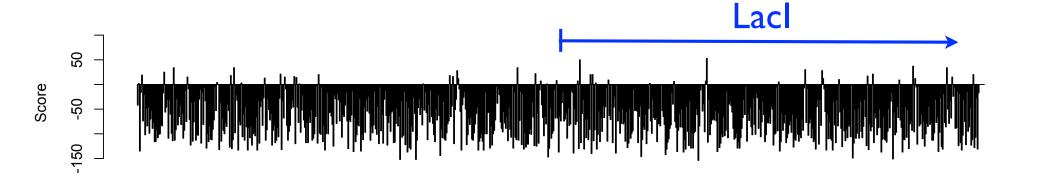
Scanning for TATA

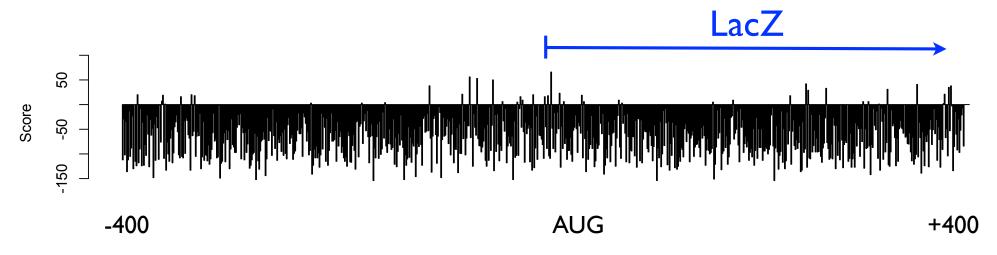


PS: scores may appear arbitrary, but based on the assumptions used to create the WMM, then can be easily converted into likelihood that sequence was drawn from foreground (e.g. "TATA") vs background (e.g. uniform) model.

See also slide 64

TATA Scan at 2 genes



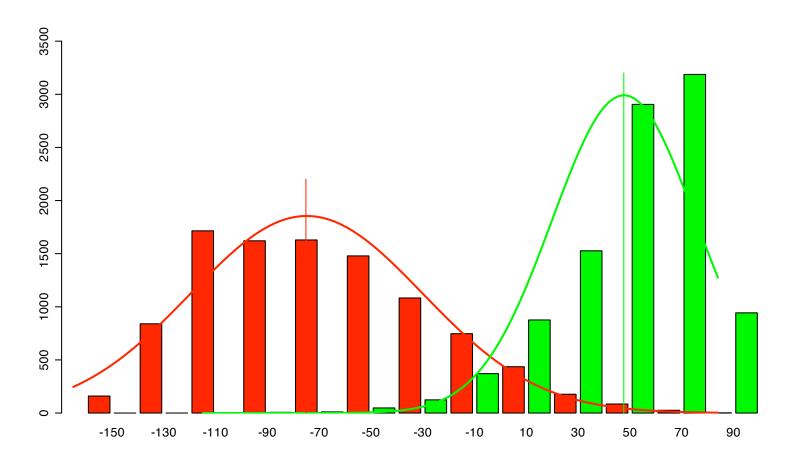


33

See slide 47

Score Distribution

(Simulated)



104 random 6-mers from foreground (green) or uniform background (red)34

Weight Matrices: Statistics

Assume:

 $f_{b,i}$ = frequency of base b in position i in TATA

 f_b = frequency of base b in all sequences

Log likelihood ratio, given $S = B_1 B_2 ... B_6$:

$$\log \left(\frac{P(S|\, \text{``tata''})}{P(S|\, \text{``non-tata''})} \right) = \log \frac{\prod_{i=1}^6 f_{B_i,i}}{\prod_{i=1}^6 f_{B_i}} = \sum_{i=1}^6 \log \frac{f_{B_i,i}}{f_{B_i}}$$

Assumes independence

Neyman-Pearson

Given a sample $x_1, x_2, ..., x_n$, from a distribution $f(...|\Theta)$ with parameter Θ , want to test hypothesis $\Theta = \theta_1$ vs $\Theta = \theta_2$.

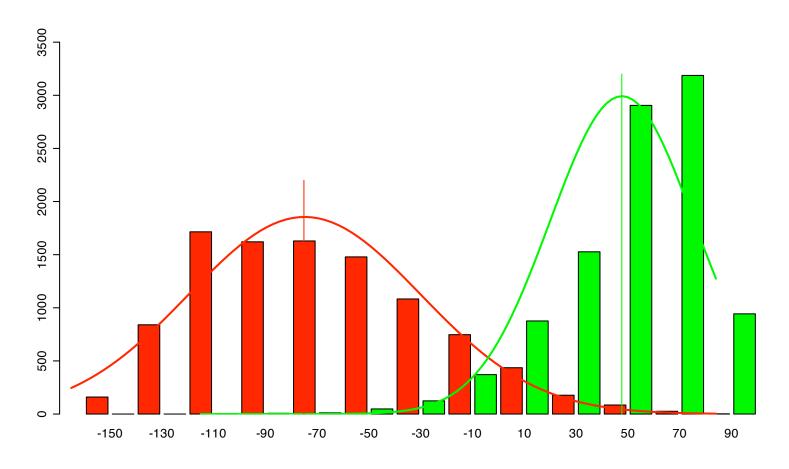
Might as well look at likelihood ratio:

$$\frac{f(x_{1}, x_{2}, ..., x_{n} | \theta_{1})}{f(x_{1}, x_{2}, ..., x_{n} | \theta_{2})} > \tau$$

(or log likelihood ratio)

Score Distribution

(Simulated)



10⁴ random 6-mers from foreground (green) or uniform background (red)₃₇

What's best WMM?

Given, say, 168 sequences $s_1, s_2, ..., s_k$ of length 6, assumed to be generated at random according to a WMM defined by 6 x (4-1) unknown parameters θ , what's the best θ ?

E.g., what's MLE for θ given data $s_1, s_2, ..., s_k$?

Answer: like coin flips or dice rolls, count frequencies per position. (Possible HW?)

Weight Matrices: Biophysics

Experiments show ~80% correlation of log likelihood weight matrix scores to measured binding energies [Fields & Stormo, 1994]

I.e., "independence assumption" ⇒ probabilitiesmultiply; log probabilities add, so

○ log prob \times energy \Rightarrow energies are \times additive

Another WMM example

8 Sequences:

ATG

ATG

ATG

ATG

ATG

GTG

GTG

TTG

Freq.	Col I	Col 2	Col 3
Α	0.625	0	0
С	0	0	0
G	0.25	0	I
Т	0.125	I	0

LLR	Col I	Col 2	Col 3
Α	1.32	8	8
С	-8	-8	-8
G	0	-8	2
Т	-	2	

Log-Likelihood Ratio:

$$\log_2 \frac{f_{x_i,i}}{f_{x_i}}, \ f_{x_i} = \frac{1}{4}$$
 (uniform background)

Non-uniform Background

E. coli - DNA approximately 25% A, C, G, T

M. jannaschi - 68% A-T, 32% G-C

LLR from previous example, assuming

$$f_A = f_T = 3/8$$

 $f_C = f_G = 1/8$

LLR	Col I	Col 2	Col 3
Α	0.74	8	8
С	-8	8	8
G		8	3
Т	-1.58	1.42	-8

e.g., G in col 3 is 8 x more likely via WMM than background, so (log_2) score = 3 (bits).

Relative entropy

Relative Entropy

AKA Kullback-Liebler Divergence, AKA Information Content

Intuitively "distance", but technically not, since it's asymmetric

Given distributions P, Q

$$H(P||Q) = \sum_{x \in \Omega} P(x) \log \frac{P(x)}{Q(x)} \ge \mathbf{0}$$

Notes:

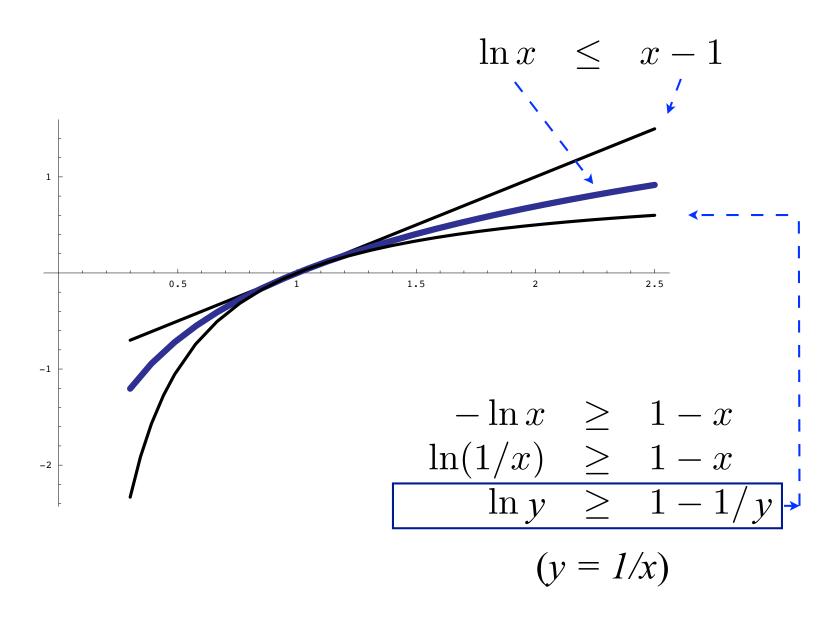
The "sample space"

Let
$$P(x) \log \frac{P(x)}{Q(x)} = 0$$
 if $P(x) = 0$ [since $\lim_{y \to 0} y \log y = 0$]
Undefined if $0 = Q(x) < P(x)$

Relative Entropy

$$H(P||Q) = \sum_{x \in \Omega} P(x) \log \frac{P(x)}{Q(x)}$$

- Intuition: A quantitative measure of how much P"diverges" from Q. (Think "distance," but note it's not symmetric.)
 - If $P \approx Q$ everywhere, then $log(P/Q) \approx 0$, so $H(P||Q) \approx 0$
 - But as they differ more, sum is pulled above 0 (next 2 slides)
- What it means quantitatively: Suppose you sample x, but aren't sure whether you're sampling from P (call it the "null model") or from Q (the "alternate model"). Then log(P(x)/Q(x)) is the log likelihood ratio of the two models given that datum. H(P||Q) is the expected per sample contribution to the log likelihood ratio for discriminating between those two models.
- Exercise: if H(P||Q) = 0.1, say. Assuming Q is the correct model, how many samples would you need to confidently (say, with 1000:1 odds) reject P?



Theorem: $H(P||Q) \ge 0$

$$\begin{array}{ll} H(P||Q) & = & \sum_x P(x) \log \frac{P(x)}{Q(x)} & \text{Idea: if P} \neq Q, \text{ then} \\ P(x) > Q(x) \Rightarrow \log(P(x)/Q(x)) > 0 \\ \geq & \sum_x P(x) \left(1 - \frac{Q(x)}{P(x)}\right) & \text{and} \\ & = & \sum_x (P(x) - Q(x)) & P(y) < Q(y) \Rightarrow \log(P(y)/Q(y)) < 0 \\ = & \sum_x P(x) - \sum_x Q(x) & \text{Q: Can this pull } H(P||Q) < 0? \\ A: \text{No, as theorem shows.} \\ & = & 1 - 1 & \text{Intuitive reason: sum is} \\ & = & 0 & \text{bigger at the positive log ratios} \\ & \text{vs the negative ones.} \end{array}$$

Furthermore: H(P||Q) = 0 if and only if P = QBottom line: "bigger" means "more different"

Column-wise Rel. Ent.

For a WMM:

$$H(P||Q) = \sum_{i} H(P_i||Q_i)$$

where P_i / Q_i are the WMM / background distributions for column i.

Proof: exercise

Hint: Use the assumption of independence between WMM columns

WMM Example, cont.

Example: R.E., Col 1				
0.625 * 1.32	0.826			
0 * -∞	0			
0.25 * 0	0			
0.125 * -1	-0.125			
Total:	0.701			

Freq.	Col I	Col 2	Col 3
Α	0.625	0	0
С	0	0	0
G	0.25	0	Ī
Т	0.125	I	0

$$f_A = f_T = 3/8$$

 $f_C = f_G = 1/8$

Uniform

LLR	Col I	Col 2	Col 3	
Α	1.32	-∞	-∞	
С	-8	-∞	-∞	
G	0	-∞	2	
Т	- I	2	-∞	
RelEnt	0.7	2	2	4

Non-uniform

LLR	Col I	Col 2	Col 3	
Α	0.74	-8	-8	
С	-8	-8	-∞	
G	I	-8	3	
Т	-1.58	1.42	-8	
RelEnt	0.51	1.42	3	4.9

WMM: How "Informative"? Mean score of site vs bkg?

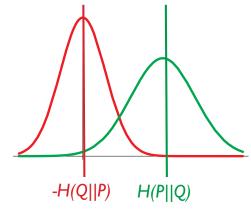
For any fixed length sequence x, let

P(x) = Prob. of x according to WMM

Q(x) = Prob. of x according to background

Relative Entropy:

$$H(P||Q) = \sum_{x \in \Omega} P(x) \log_2 \frac{P(x)}{Q(x)}$$



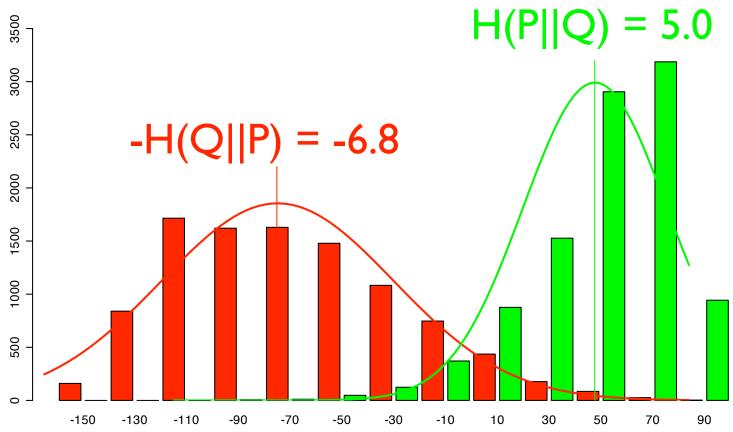
H(P||Q) is expected log likelihood score of a sequence randomly chosen from WMM (wrt background);

-H(Q||P) is expected score of Background (wrt WMM)

$$\sum_{x}Q\left(x\right)\log(P(x)/Q(x))=-\sum_{x}Q\left(x\right)\log(Q(x)/P(x)=-H\left(Q\right|\left|P\right)$$

Expected score difference: H(P||Q) + H(Q||P)

WMM Scores vs Relative Entropy



On average, foreground model scores > background by 11.8 bits (score difference of 118 on 10x scale used in examples above). $2^{11.8} \approx 3566$, which is good, since *many* more non-TATA than TATA

Pseudocounts

Are the $-\infty$'s a problem?

Are you certain that a given residue never occurs in a given pos? Then $-\infty$ just right. Else, it may be a small-sample artifact

Typical fix: add a *pseudocount* to each observed count—small constant (often 1.0; but needn't be) Sounds *ad hoc*; there is a Bayesian justification

WMM Summary

Weight Matrix Model (aka Position Weight Matrix, PWM, Position Specific Scoring Matrix, PSSM, "possum", 0th order Markov model) One (of many) ways to summarize the observed/allowed variability in a set of related, fixed-length sequences Simple statistical model; assumes independent positions To build: count (+ pseudocount) letter frequency per position, log likelihood ratio to background To scan: add LLRs per position, compare to threshold Generalizations to higher order models (i.e., letter frequency per position, conditional on neighbor) also possible, with enough training data (kth order MM)

How-to Questions

Given aligned motif instances, build model?

Frequency counts (above, maybe w/ pseudocounts)

Given a model, find (probable) instances

Scanning, as above

Given unaligned strings thought to contain a motif, find it? (e.g., upstream regions of coexpressed genes)

Hard ... rest of lecture.

Motif Discovery

Motif Discovery

Based on the above, a natural approach to motif discovery, given, say, unaligned upstream sequences of genes thought to be co-regulated, is to find a set of subsequences of max relative entropy

cgatcTACGATaca...
tagTAAAATtttc...
ccgaTATACTcc...
ggGATAATgagg...
gactTATGATaa...
f ccTATGTTtgcc...

Unfortunately, this is NP-hard [Akutsu]

Motif Discovery: 4 example approaches

Brute Force

Greedy search

Expectation Maximization

Gibbs sampler

Brute Force

Input:

Motif length L, plus sequences s_1 , s_2 , ..., s_k (all of length n+L-1, say), each with one instance of an unknown motif

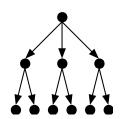
Algorithm:

Build all k-tuples of length L subsequences, one from each of $s_1, s_2, ..., s_k$ (n^k such tuples)

Compute relative entropy of each

Pick best

Brute Force, II



Input:

Motif length L, plus seqs s_1 , s_2 , ..., s_k (all of length n+L-1, say), each with one instance of an unknown motif

Algorithm in more detail:

Build singletons: each len L subseq of each s_1 , s_2 , ..., s_k (nk sets)

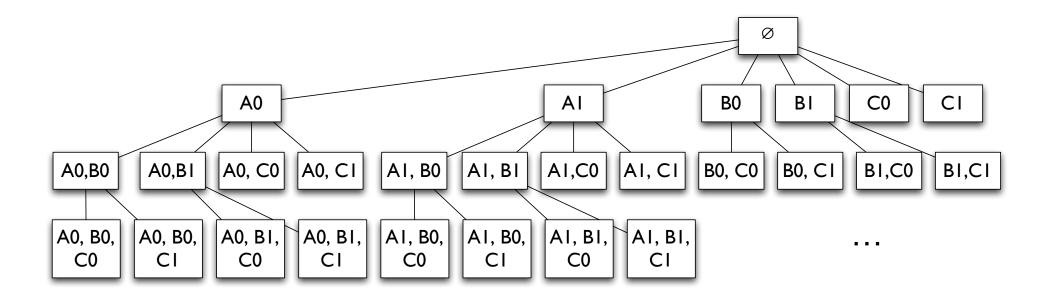
Extend to pairs: len L subseqs of each pair of seqs $(n^2\binom{k}{2})$ sets)

Then triples: len L subseqs of each triple of seqs $(n^3\binom{k}{3})$ sets)

Repeat until all have k sequences $(n^k \binom{k}{k})$ sets)

(n+1)k in total; compute relative entropy of each; pick best

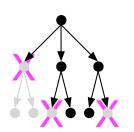
Example



Three sequences (A, B, C), each with two possible motif positions (0,1)

Greedy Best-First

[Hertz, Hartzell & Stormo, 1989, 1990]



Input:

Sequences $s_1, s_2, ..., s_k$; motif length L;

"breadth" d, say d = 1000

Algorithm:

As in brute, but discard all but best d relative entropies at each stage

Expectation Maximization [MEME, Bailey & Elkan, 1995]

Input (as above):

Sequences s_1 , s_2 , ..., s_k ; motif length L; background model; again assume one instance per sequence

(variants possible)

Algorithm: EM

Visible data: the sequences

Hidden data: where's the motif

Note: Goal is MLE for θ . But how do we assign likelihoods to the *observed* data s_i ? Assume the length L motif instance is generated by θ , & the rest ~ background.

$$Y_{i,j} = \begin{cases} 1 & \text{if motif in sequence } i \text{ begins at position } j \\ 0 & \text{otherwise} \end{cases}$$

Parameters θ : The WMM

MEME Outline

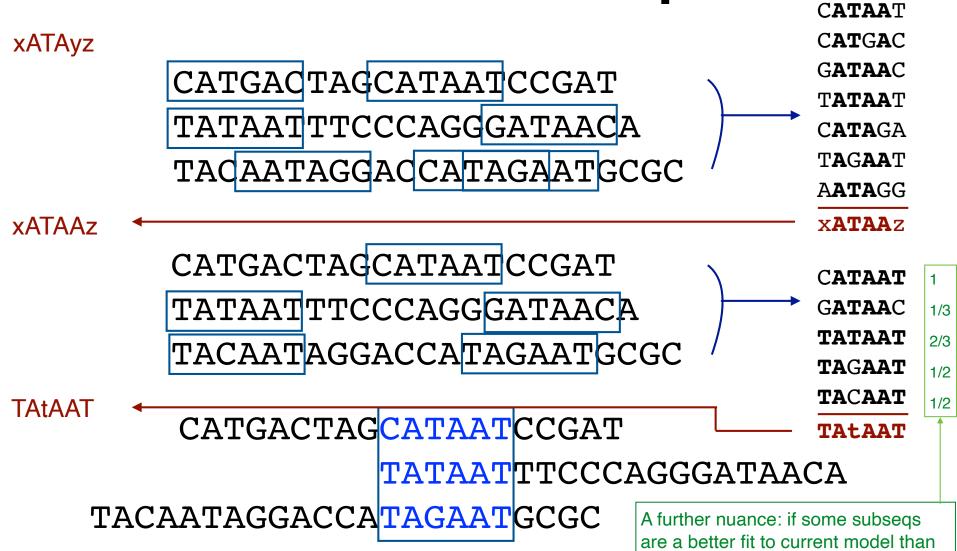
Parameters θ = an unknown WMM Typical EM algorithm:

Use parameters $\theta^{(t)}$ at t^{th} iteration to estimate where the motif instances are (the hidden variables)

Use those estimates to re-estimate the parameters θ to maximize likelihood of observed data, giving $\theta^{(t+1)}$ Repeat

Key: given a few good matches to best motif, expect to pick more

Cartoon Example



others, we can up-weight their contribution to the next model

Expectation Step

(where are the motif instances?)

$$\widehat{Y}_{i,j} = E(Y_{i,j} \mid s_i, \theta^t) \xrightarrow{\mathbb{P}^{0} \cdot P^{(0)} + 1 \cdot P^{(1)}}$$

$$= P(Y_{i,j} = 1 \mid s_i, \theta^t) \xrightarrow{P(Y_{i,j} = 1 \mid \theta^t)}$$

$$= P(s_i \mid Y_{i,j} = 1, \theta^t) \frac{P(Y_{i,j} = 1 \mid \theta^t)}{P(s_i \mid \theta^t)}$$

$$= cP(s_i \mid Y_{i,j} = 1, \theta^t)$$

= c'' 2s, s=∑(log(foregrnd/backgrnd)), i.e. WMM/θ-score @i,j 64

Maximization Step

(what is the motif?)

Expected log likelihood, as a function of θ (the WMM):

$$\begin{split} Q(\theta \mid \theta^{t}) &= E_{Y \sim \theta^{t}} [\log P(s, Y \mid \theta)] \\ &= E_{Y \sim \theta^{t}} [\log \prod_{i=1}^{k} P(s_{i}, Y_{i} \mid \theta)] \\ &= E_{Y \sim \theta^{t}} [\sum_{i=1}^{k} \log P(s_{i}, Y_{i} \mid \theta)] \\ &= E_{Y \sim \theta^{t}} [\sum_{i=1}^{k} \sum_{j=1}^{|s_{i}| - l + 1} Y_{i, j} \log P(s_{i}, Y_{i, j} = 1 \mid \theta)] \\ &= E_{Y \sim \theta^{t}} [\sum_{i=1}^{k} \sum_{j=1}^{|s_{i}| - l + 1} Y_{i, j} \log (P(s_{i} \mid Y_{i, j} = 1, \theta) P(Y_{i, j} = 1 \mid \theta))] \\ &= \sum_{i=1}^{k} \sum_{j=1}^{|s_{i}| - l + 1} E_{Y \sim \theta^{t}} [Y_{i, j}] \log P(s_{i} \mid Y_{i, j} = 1, \theta) + C \\ &= \sum_{i=1}^{k} \sum_{j=1}^{|s_{i}| - l + 1} \widehat{Y}_{i, j} \log P(s_{i} \mid Y_{i, j} = 1, \theta) + C \end{split}$$

Goal: find θ maximizing $Q(\theta | \theta^t)$

M-Step (cont.)

$$Q(\theta \mid \theta^t) = \sum_{i=1}^k \sum_{j=1}^{|s_i|-l+1} \widehat{Y}_{i,j} \log P(s_i \mid Y_{i,j} = 1, \theta) + C$$

 $\theta^{t+1} = \arg \max_{\theta} Q(\theta \mid \theta^t)$

Exercise: Show this is maximized by setting θ to "count" letter freqs over all possible motif instances, with counts weighted by $\widehat{Y}_{i,j}$, again the "obvious" thing.

Intuition: vary θ to emphasize the subseqs with largest $\widehat{Y}_{i,j}$'s

 $s_1: ACGGATT...$ $s_k: \mathsf{GC...TCGGAC}$ $egin{array}{ll} \widehat{Y}_{1,1} & \operatorname{ACGG} \\ \widehat{Y}_{1,2} & \operatorname{CGGA} \\ \widehat{Y}_{1,3} & \operatorname{GGAT} \end{array}$ $\vdots \\ \widehat{Y}_{k, |s_k|-l} \quad \begin{array}{c} \vdots \\ \mathbf{CGGA} \\ \widehat{Y}_{k, |s_k|-l+1} \quad \mathbf{GGAC} \end{array}$

Initialization

- 1. Try many/every motif-length substring, and use as initial θ a WMM with, say, 80% of weight on that sequence, rest uniform
- 2. Run a few iterations of each
- 3. Run best few to convergence

 (Having a supercomputer helps)

 http://meme-suite.org

Sequence Logos

A WMM Vizualization

TATA Box Frequencies

pos	1	2	3	4	5	6
Α	2	95	26	59	51	1
С	9	2	14	13	20	3
G	10	1	16	15	13	0
T	79	3	44	13	17	96

TATA Sequence Logo 1.5 Letter height as % of stack height = freq % Relative entropy of col 1.0 G Bits Stack height = 0.5 0.0

MEME: What Data?

Upstream regions of many genes (find widely shared motifs, like TATA)

Upstream regions of co-regulated genes (find shared, but more specific, motifs involved in that regulation, e.g., "glucose starvation" in E. coli)

ChIP seq data (find motifs bound by specific proteins) (slide 90)

Another Motif Discovery Approach The Gibbs Sampler

Lawrence, et al. "Detecting Subtle Sequence Signals: A Gibbs Sampling Strategy for Multiple Sequence Alignment," Science 1993

Sigma-37			SQKETGDILGISQMHVSR		240	A25944	
SpoIIIC	94	RFGLDLKKEK	TQREIAKELGISRSYVSR	IEKRALMKMF	111	A28627	
NahR	22	VVFNQLLVDR	RVSITAENLGLTQPAVSN	ALKRLRTSLQ	39	A32837	
Antennapedia	326	FHFNRYLTRR	RRIEIAHALCLTERQIKI	WFQNRRMKWK	343	A23450	
NtrC (Brady.)	449	LTAALAATRG	NQIRAADLLGLNRNTLRK	KIRDLDIQVY	466	B26499	
DicA	22	IRYRRKNLKH	TQRSLAKALKISHVSVSQ	WERGDSEPTG	39	B24328	(BVECDA)
MerD	5	, MNAY	TVSRLALDAGVSVHIVRD	YLLRGLLRPV	22	C29010	
Fis	73	LDMVMQYTRG	NQTRAALMMGINRGTLRK	KLKKYGMN	90	A32142	(DNECFS)
MAT a1	99	FRRKQSLNSK	EKEEVAKKOGITPLQVRV	WFINKRMRSK	116	A90983	(JEBY1)
Lambda cII	25	SALLNKIAML	GTEKTAEAVGVDKSQISR	WKRDWIPKFS	42	A03579	(QCBP2L)
Crp (CAP)	169	THPDGMQIKI	TRQEIGQIVGCSRETVGR	ILKMLEDQNL	186	A03553	(QRECC)
Lambda Cro	15	ITLKDYAMRF	GQTKTAKDLGVYQSAINK	AIHAGRKIFL	32	A03577	(RCBPL)
P22 Cro	12	YKKDVIDHFG	TORAVAKALGISDAAVSO	WKÉVIPEKDA	29	A25867	(RGBP22)
AraC	196	ISDHLADSNF	DIASVAQHVCLSPSRLSH	LFRQQLGISV	213	A03554	(RGECA)
Fnr	196	FSPREFRLTM	TRGDIGNYLGLTVETISR	LLGRFQKSGM	213	A03552	(RGECF)
HtpR	252	ARWLDEDNKS	TLQELADRYGVSAERVRQ	LEKNAMKKLR	269	A00700	(RGECH)
NtrC (K.a.)	444	LTTALRHTQG	HKQEAARLLGWGRNTLTR	KLKELGME	461	A03564	(RGKBCP)
CytR	11	MKAKKQETAA	TMKDVALKAKVSTATVSR	ALMNPDKVSQ	28	A24963	(RPECCT)
DeoR	23	LQELKRSDKL	HLKDAAALLGVSEMTIRR	DLNNHSAPVV	40	A24076	(RPECDO)
GalR	3	-	TIKDVARLAGVSVATVSR		20	A03559	(RPECG)
LacI	5	MKPV	TLYDVAEYAGVSYQTVSR	VVNQASHVSA	22	A03558	(RPECL)
TetR	26		TTRKI AQKLGVEQPTLYW	_	43	A03576	(RPECTN)
TrpR	67		SOREI KNELGAGIATITR		84	A03568	(RPECW)
NifA	495		VQAKAARLLGMTPRQVAY		512	s02513	
SpoIIG			TOKOVADMMGISOSYISR		222	s07337	
Pin	160	QAGRLIAAGT	PROKVALIYDVGVSTLYK	TFPAGDK	177	S07958	
PurR	- 3		TIKDVAKRANVSTTTVSH		20	S08477	
EbgR	3		TLKDIAIEAGVSLATVSR		20	s09205	
LexA	27	DHISQTGMPP	TRAEIAORLGFRSPNAAE	EHLKALARKG	44	S11945	
P22 cI	25	SSILNRIAIR	GORKVADALGINESQISR	WKGDFIPKMG	42	B25867	(Z1BPC2)
			****	***			
			6 10				73

В								Posit	ion i	n site								
D	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Arg	94	222	265	137	9	9	137	137	9	9	9	52	222	94	94	9	265	606
Lys	9	133	442	380	9	71	380	194	9	133	9	9	71	9	9	9	71	256
${ t Glu}$	53	9	96	401	9	9	140	140	9	9	9	53	140	140	9	9	9	53
Asp	67	9	9	473	9	9	299	125	9	67	9	67	67	9	9	9	9	67
Gln	9	600	224	9	9	9	224	9	9	9	9	9	278	63	278	9	9	170
His	240	9	´ 9	9	9	9	125	125	9	9	9	9	125	125	125	9	9	240
Asn	168	9	9	9	9	9	168	89	9	89	9	248	9	168	89	9	89	89
Ser	117	9	117	117	9	9	9	9	9	9	9	819	63	387	63	9	819	9
Gly	151	9	56	9	9	151	9	9	9	1141	9	151	9	56	9	9	56	9
Ala	.9	9	112	43	181	901	43	181	215	9	43	9	43	181	112	. 43	78	9
Thr	915	130	130	9	251	9	9	9	9	9	9	311	130	70	855	* 9	130	9
Pro	76	9	9	9	9	9	9	9	9	9	9	9	210	210	9	9	9,	9
Cys	9	9	9	9	9	9	9	9	295	581	295	9	9	9	9	9	, 9	9
Val	58	107	9	9	500	9	9	9	156	9	598	9	205	58	9	746	9	58
Leu	9	121	9	9	149	9	93	149	458	9	149	9	37	37	9	177	9	9
Ile	9	166	114	61	323	9	114	166	9	9	427	9.	61	9	61	427	9	61
Met	9	104	9	9	9	9	9	198	198	9	104	9	9	198	9	9	9	9
Tyr	9	9	136	9	۰ و	9	9	262	262	9	9	136	136	9	262	9	262	136
Phe	9	9	9	9	9	9	9	9	9	9	108	9	9	9	9	9	9	9
Trp	9	9	9	9	9	9	9	9	9	9	366	9	9	9	9	9	9	366
	_	_	-	_	-	_		_	-	1	500	-	-	_		-		300

6 10

Some History

Geman & Geman, IEEE PAMI 1984

Hastings, Biometrika, 1970

Metropolis, Rosenbluth, Rosenbluth, Teller & Teller, "Equations of State Calculations by Fast Computing Machines," J. Chem. Phys. 1953

Josiah Williard Gibbs, 1839-1903, American physicist, a pioneer of thermodynamics

How to Average

An old problem:

k random variables:

Joint distribution (p.d.f.):

Some function:

Want Expected Value:

$$x_1, x_2, \dots, x_k$$
 $P(x_1, x_2, \dots, x_k)$
 $f(x_1, x_2, \dots, x_k)$
 $E(f(x_1, x_2, \dots, x_k))$

How to Average

$$E(f(x_1, x_2, \dots, x_k)) = \int_{x_1} \int_{x_2} \dots \int_{x_k} f(x_1, x_2, \dots, x_k) \cdot P(x_1, x_2, \dots, x_k) dx_1 dx_2 \dots dx_k$$

Approach I: direct integration (rarely solvable analytically, esp. in high dim)

Approach 2: numerical integration (often difficult, e.g., unstable, esp. in high dim)

Approach 3: Monte Carlo integration

sample $\vec{x}^{(1)}, \vec{x}^{(2)}, \dots \vec{x}^{(n)} \sim P(\vec{x})$ and average:

$$E(f(\vec{x})) \approx \frac{1}{n} \sum_{i=1}^{n} f(\vec{x}^{(i)})$$

Markov Chain Monte Carlo (MCMC)

Independent sampling also often hard, but not required for expectation

$$m{MCMC}$$
 $ec{X}_{t+1} \sim P(ec{X}_{t+1} \mid ec{X}_t)$ w/ stationary dist = P

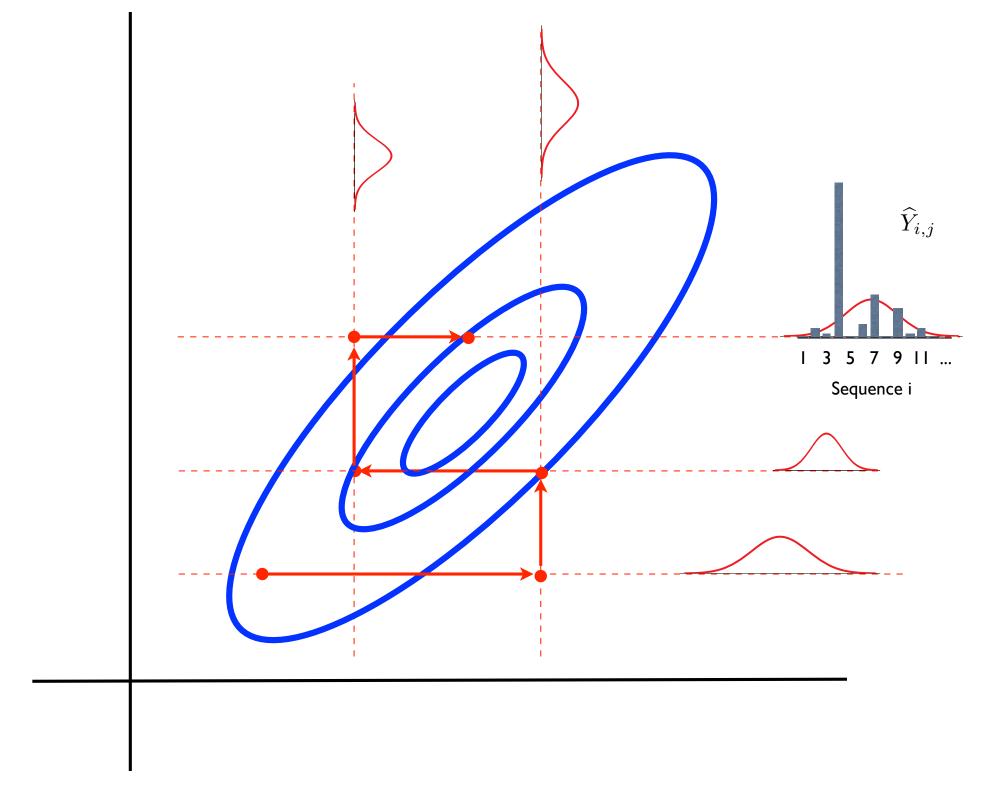
Simplest & most common: Gibbs Sampling

$$P(x_i \mid x_1, x_2, \dots, x_{i-1}, x_{i+1}, \dots, x_k)$$

Algorithm

for
$$t = 1$$
 to ∞
for $i = 1$ to k do:

$$x_{t+1,i} \sim P(x_{t+1,i} \mid \overline{x_{t+1,1}, x_{t+1,2}, \dots, x_{t+1,i-1}}, \overline{x_{t,i+1}, \dots, x_{t,k}})$$



Input: again assume sequences $s_1, s_2, ..., s_k$ with one length w motif per sequence

Motif model: WMM

Parameters: Where are the motifs?

for
$$1 \le i \le k$$
, have $1 \le x_i \le |s_i| - w + 1$

"Full conditional": to calc

$$P(x_i = j \mid x_1, x_2, \dots, x_{i-1}, x_{i+1}, \dots, x_k)$$

build WMM from motifs in all sequences except i, then calc prob that motif in i^{th} sequences occurs at j by usual "scanning" alg.

Overall Gibbs Alg

```
Randomly initialize x_i's
      for t = |to \infty|
        for i = 1 to k
           discard motif instance from s;
           recalc WMM from rest
           for j = 1 ... |s_i| - w + 1
Similar to
MEME, but it
             calculate prob that i^{th} motif is at j:
average over, P(x_i = j \mid x_1, x_2, \dots, x_{i-1}, x_{i+1}, \dots, x_k)
rather than
             pick new x_i according to that distribution
sample from
```

would

Issues

Burnin - how long must we run the chain to reach stationarity?

Mixing - how long a post-burnin sample must we take to get a good sample of the stationary distribution? In particular:

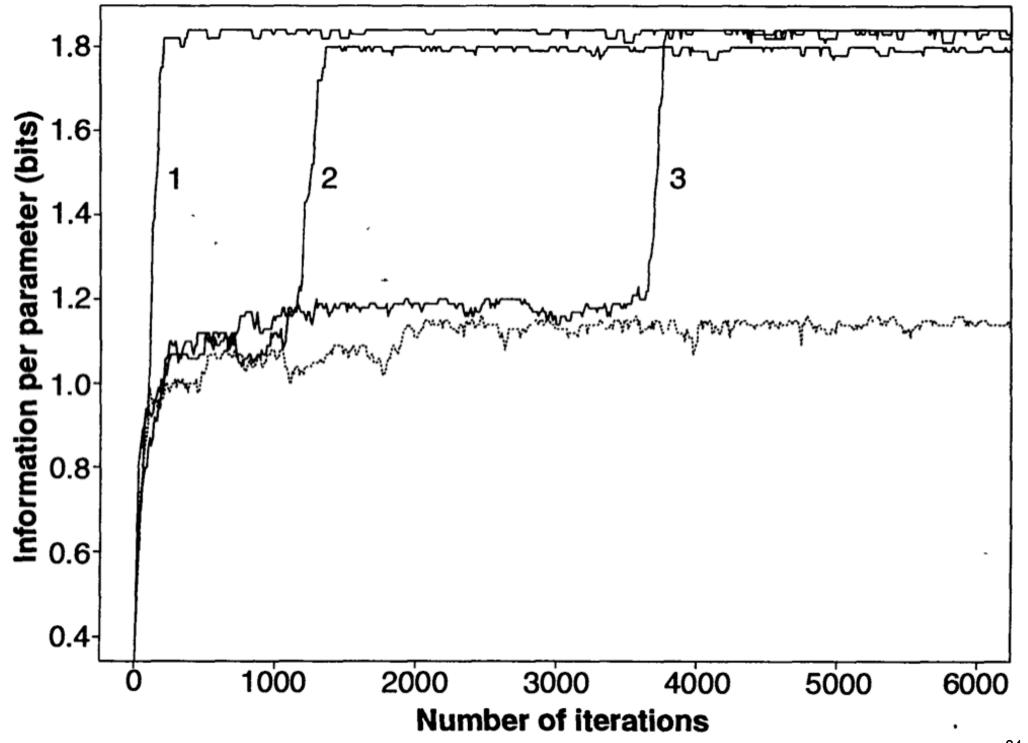
Samples are not independent; may not "move" freely through the sample space E.g., may be many isolated modes

Variants & Extensions

"Phase Shift" - may settle on suboptimal solution that overlaps part of motif. Periodically try moving all motif instances a few spaces left or right.

Algorithmic adjustment of pattern width: Periodically add/remove flanking positions to maximize (roughly) average relative entropy per position

Multiple patterns per string



Assessing computational tools for the discovery of transcription factor binding sites

Martin Tompa^{1,2}, Nan Li¹, Timothy L Bailey³, George M Church⁴, Bart De Moor⁵, Eleazar Eskin⁶, Alexander V Favorov^{7,8}, Martin C Frith⁹, Yutao Fu⁹, W James Kent¹⁰, Vsevolod J Makeev^{7,8}, Andrei A Mironov^{7,11}, William Stafford Noble^{1,2}, Giulio Pavesi¹², Graziano Pesole¹³, Mireille Régnier¹⁴, Nicolas Simonis¹⁵, Saurabh Sinha¹⁶, Gert Thijs⁵, Jacques van Helden¹⁵, Mathias Vandenbogaert¹⁴, Zhiping Weng⁹, Christopher Workman¹⁷, Chun Ye¹⁸ & Zhou Zhu⁴

Methodology

13 tools

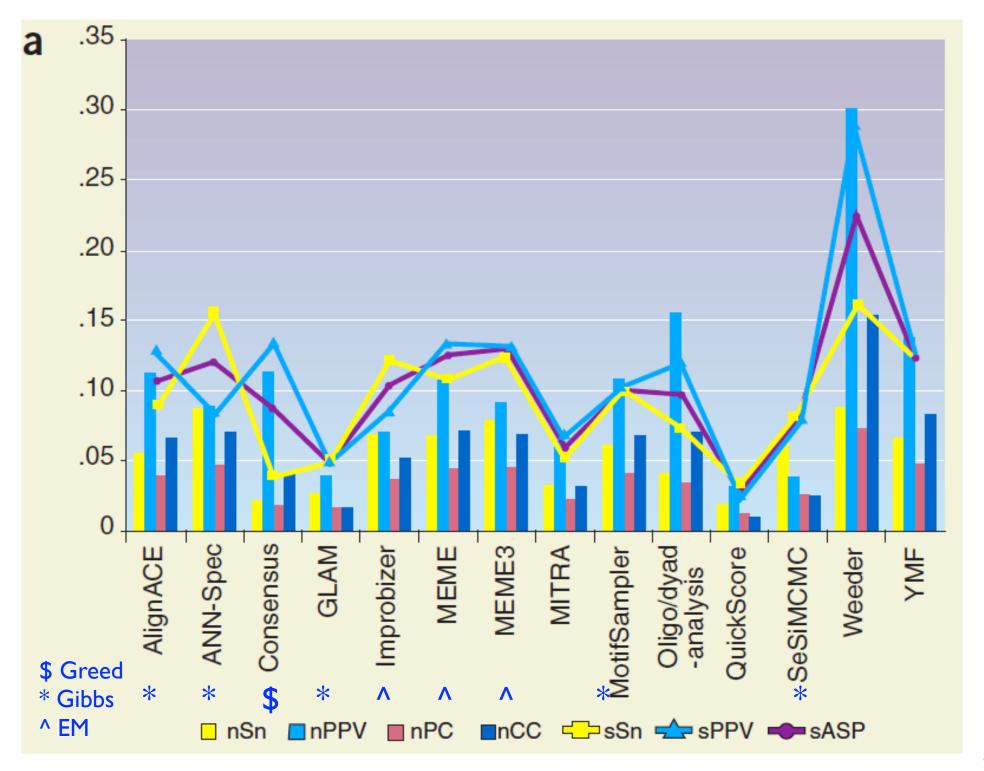
Real 'motifs' (Transfac)

56 data sets (human, mouse, fly, yeast)

'Real', 'generic', 'Markov'

Expert users, top prediction only

"Blind" – sort of



- nTP is the number of nucleotide positions in both known sites and predicted sites,
- nFN is the number of nucleotide positions in known sites but not in predicted sites,
- nFP is the number of nucleotide positions not in known sites but in predicted sites, and
- nTN is the number of nucleotide positions in neither known sites nor predicted sites.
- sTP be the number of known sites overlapped by predicted sites,
- sFN be the number of known sites not overlapped by predicted sites, and
- sFP be the number of predicted sites not overlapped by known sites.

At either the nucleotide (x = n) or site (x = s) level, one can then define:

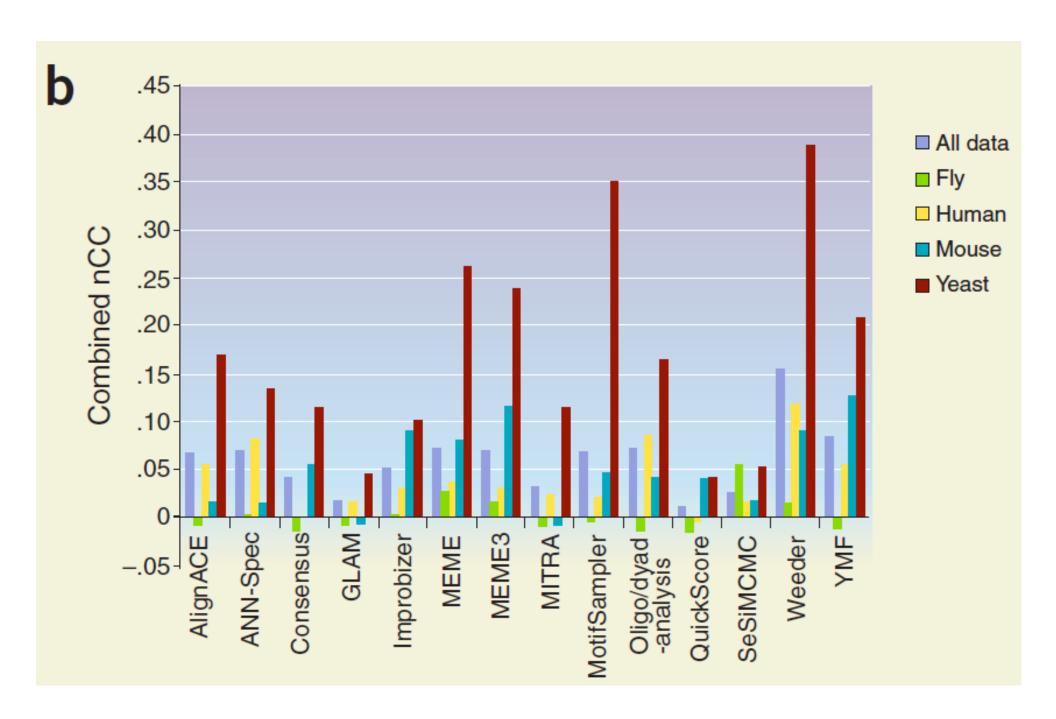
- Sensitivity: xSn = xTP/(xTP + xFN), and
- Positive Predictive Value: xPPV = xTP/(xTP + xFP).

Specificity: nSP = nTN/(nTN + nFP).

Finally, it is enlightening to consider various single statistics that in some sense average (some of) these quantities. Following Pevzner & Sze¹, define the (nucleotide level) performance coefficient as: $nCC = \frac{nTP \cdot nTN - nFN \cdot nFP}{\sqrt{(nTP + nFN)(nTN + nFP)(nTP + nFN)}}$

• nPC = nTP/(nTP + nFN + nFP). sASP = (sSn + sPPV)/2. The correlation coefficient *nCC* is the Pearson product-moment coefficient of correlation in the particular case of two binary variables, also called the 'phi coefficient of correlation.' The two binary variables are the characteristic vectors of the known nucleotide positions and

Notation



Lessons

Evaluation is hard (esp. when "truth" is unknown)

Accuracy low

partly reflects limitations in evaluation methodology (e.g. ≤ I prediction per data set; results better in synth data)

partly reflects difficult task, limited knowledge (e.g. yeast > others)

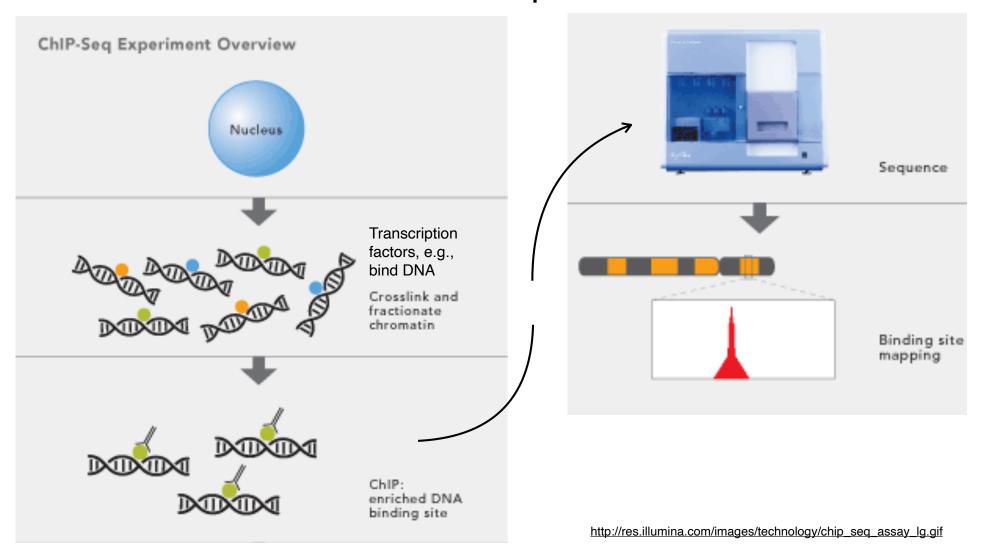
No clear winner re methods or models

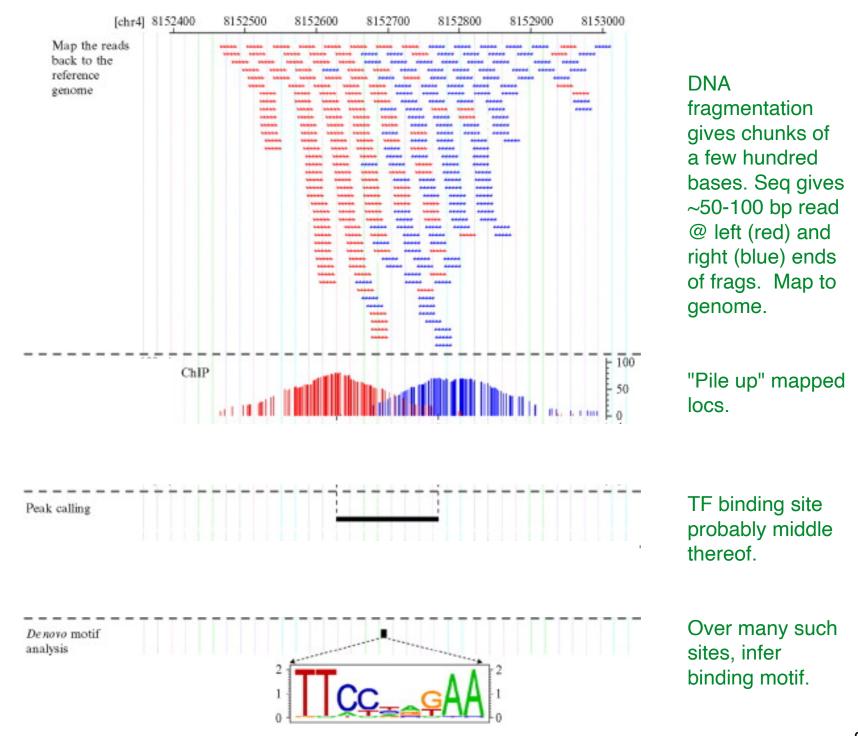
ChIP-seq

Chromatin ImmunoPrecipitation Sequencing

ChIP-seq

How to find where a transcription factor binds to DNA?





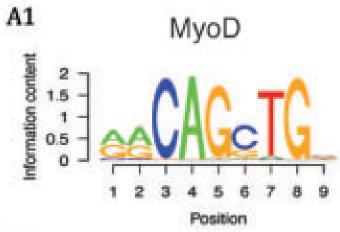
TF Binding Site Motifs From ChlPseq

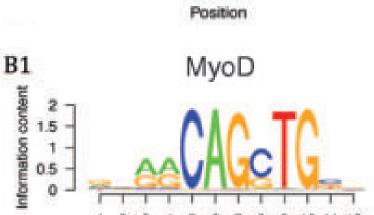
LOTS of data

E.g. 10^3 – 10^5 sites, hundreds of reads each (plus perhaps even more nonspecific)

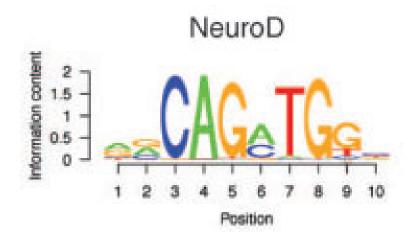
Motif variability

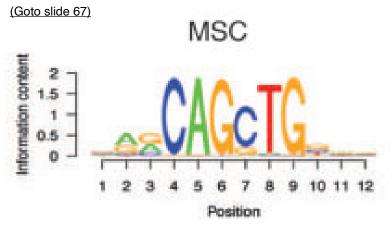
Co-factor binding sites





Position





Motif Discovery Summary

Important problem: a key to understanding gene regulation Hard problem: short, degenerate signals amidst much noise *Many* variants have been tried, for representation, search, and discovery. We looked at only a few:

Weight matrix models for representation & search

Relative Entropy for evaluation/comparison

Greedy, MEME and Gibbs for discovery

Still room for improvement. E.g., ChIP-seq and Comparative genomics (cross-species comparison) are very promising.