

Markov Models and Hidden Markov Models

Dosage Compensation and X-Inactivation

2 copies (mom/dad) of each chromosome I-23
Mostly, both copies of each gene are expressed
E.g., A B O blood group defined by 2 alleles of I gene
Women (XX) get double dose of X genes (vs XY)?
So, early in embryogenesis:

- One X randomly inactivated in each cell How?
- Choice maintained in daughter cells

Calico: a major coat color gene is on X

Reminder: Proteins "Read" DNA

Figure 7-10 Molecular Biology of the Cell 5/e (© Garland Science 2008)

http://www.rcsb.org/pdb/explore/jmol.do?structureId=IMDY&bionumber=I

Down in the Groove

Different patterns of hydrophobic methyls, potential H bonds, etc. at edges of different base pairs. They're accessible, esp. in major groove

Figure 7-7 Molecular Biology of the Cell 5/e (© Garland Science 2008)

DNA Methylation

- CpG 2 adjacent nts, same strand (not Watson-Crick pair; "p" mnemonic for the phosphodiester bond of the DNA backbone)
- C of CpG is often (70-80%) methylated in mammals i.e., CH₃ group added (both strands)

cytosine

Same Pairing

Methyl-C alters major groove profile (.. TF binding), but not basepairing, transcription or replication

Figure 7-7 Molecular Biology of the Cell 5/e (© Garland Science 2008)

DNA Methylation–Why

In vertebrates, it generally silences transcription

(Epigenetics) X-inactivation, imprinting, repression of mobile elements, cancers, aging, and developmental differentiation

E.g., if a stem cell divides, one daughter fated to be liver, other kidney, need to

(a) turn off liver genes in kidney & vice versa,

(b) remember that through subsequent divisions

How? One way:

- (a) Methylate genes, esp. promoters, to silence them
- (b) after ÷, DNA methyltransferases convert hemi- to fully-methylated (& deletion of methyltransferase is embrionic-lethal in mice)

Major exception: promoters of housekeeping genes

cytosine

"CpG Islands"

Methyl-C mutates to T relatively easily Net: CpG is less common than expected genome-wide: f(CpG) < f(C)*f(G)BUT in some regions (e.g. active promoters), CpG remain unmethylated, so $CpG \rightarrow TpG$ less likely there: makes "CpG Islands"; often mark gene-rich regions

cytosine

thymine

CpG Islands

CpG Islands

More CpG than elsewhere (say, CpG/GpC>50%)

More C & G than elsewhere, too (say, C+G>50%)

Typical length: few 100 to few 1000 bp

Questions

Is a short sequence (say, 200 bp) a CpG island or not? Given long sequence (say, 10-100kb), find CpG islands?

Markov & Hidden Markov Models

References (see also online reading page):

Eddy, "What is a hidden Markov model?" Nature Biotechnology, 22, #10 (2004) 1315-6.

- Durbin, Eddy, Krogh and Mitchison, "Biological Sequence Analysis", Cambridge, 1998 (esp. chs 3, 5)
- Rabiner, "A Tutorial on Hidden Markov Models and Selected Application in Speech Recognition," Proceedings of the IEEE, v 77 #2,Feb 1989, 257-286

Independence

A key issue: Previous models we've talked about assume *independence* of nucleotides in different positions - definitely unrealistic.

Markov Chains

A sequence x_1, x_2, \dots of random variables is a *k-th order Markov chain* if, for all *i*, *i*th value is independent of all but the previous *k* values:

$$P(x_i \mid \underbrace{x_1, x_2, \dots, x_{i-1}}_{i-1}) = P(x_i \mid \underbrace{x_{i-k}, x_{i-k+1}, \dots, x_{i-1}}_{k \text{ typically } \ll i-1})$$

Example I: Uniform random ACGT Example 2: Weight matrix model Example 3: ACGT, but \downarrow Pr(G following C) Ist

A Markov Model (Ist order)

States:A,C,G,TEmissions:corresponding letterTransitions: $a_{st} = P(x_i = t | x_{i-1} = s)$ Ist order

A Markov Model (Ist order)

States: A,C,G,T Emissions: corresponding letter Transitions: $a_{st} = P(x_i = t | x_{i-1} = s)$ Begin/End states

Pr of emitting sequence x

 $P(x) = P(x_1, x_2, \dots, x_n) \xrightarrow{\text{law of probability}}_{\text{("chain rule")}}$ $= P(x_1) P(x_1) P(x_1) P(x_1) P(x_2) P(x_1) P(x_2) P(x_2) P(x_1) P(x_2) P($ $= P(x_1) \cdot P(x_2 \mid x_1) \cdots P(x_n \mid x_{n-1}, \dots, x_1)$ $= P(x_1) \cdot P(x_2 \mid x_1) \cdots P(x_n \mid x_{n-1}) \xrightarrow{}_{i \in \mathcal{N}} \mathcal{N}$ $= P(x_1) \prod_{i=1}^{n-1} a_{x_i, x_{i+1}}$ $= \prod_{i=0}^{n-1} a_{x_i,x_{i+1}}$ (with Begin state)

Training

Max likelihood estimates for transition probabilities are just the frequencies of transitions when emitting the training sequences

E.g., from 48 CpG islands in 60k bp:

+	A	С	G	т	-	A	С	G	т
A	0.180	0.274	0.426	0.120	A	0.300	0.205	0.285	0.210
С	0.171	0.368	0.274	0.188	С	0.322	0.298*	0.078	0.302
G	0.161	0.339	0.375	0.125	G	0.248	0.246	0.298	0.208
т	0.079	0.355	0.384	0.182	т	0.177	0.239	0.292	0.292
								From	

Discrimination/Classification

Log likelihood ratio of CpG model vs background model

$$S(x) = \log \frac{P(x|\text{model}+)}{P(x|\text{model}-)} = \sum_{i=1}^{L} \log \frac{a_{x_{i-1}x_i}^+}{a_{x_{i-1}x_i}^-} = \sum_{i=1}^{L} \beta_{x_{i-1}x_i}$$

β	A	С	G	Т
А	-0.740	0.419	0.580	-0.803
С	-0.913	0.302	1.812	-0.685
G	-0.624	0.461	0.331	-0.730
Т	-1.169	0.573	0.393	-0.679

From DEKM 19

CpG Island Scores

Figure 3.2 Histogram of length-normalized scores.

Questions

QI: Given a *short* sequence, is it more likely from feature model or background model? Above

Q2: Given a *long* sequence, where are the features in it (if any)

Approach I: score 100 bp (e.g.) windows

Pro: simple

Con: arbitrary, fixed length, inflexible

Approach 2: combine +/- models.

Combined Model

Emphasis is "Which (hidden) state?" not "Which model?"

Hidden Markov Models (HMMs; Claude Shannon, 1948)

States: Paths: Transitions: Emissions:

Observed data: Hidden data: $1, 2, 3, \ldots$

sequences of states $\pi = (\pi_1, \pi_2, \ldots)$ $a_{k,l} = P(\pi_i = l \mid \pi_{i-1} = k)$ $e_k(b) = P(x_i = b \mid \pi_i = k)$

emission sequence state/transition sequence

The Occasionally Dishonest Casino

1 fair die, 1 "loaded" die, occasionally swapped

Figure 3.5

Rolls: Visible data–300 rolls of a die as described above. Die: Hidden data–which die was actually used for that roll (F = fair, L = loaded). Viterbi: the prediction by the Viterbi algorithm is shown.

Inferring hidden stuff

Joint probability of a given path π & emission sequence *x*:

$$P(x,\pi) = a_{0,\pi_1} \prod_{i=1}^n e_{\pi_i}(x_i) \cdot a_{\pi_i,\pi_{i+1}}$$

But π is hidden; what to do? Some alternatives:

Most probable single path

$$\pi^* = \arg \max_{\pi} P(x, \pi)$$

Sequence of most probable states
$$\hat{\pi}_i = \arg \max_k P(\pi_i = k \mid x)$$

Etc.

The Viterbi Algorithm: The most probable path

Viterbi finds: $\pi^* = \arg \max_{\pi} P(x, \pi)$ Possibly there are 10⁹⁹ paths of prob 10⁻⁹⁹ (If so, non-Viterbi approaches may be preferable.)

More commonly, one path (+ slight variants) dominate others; Viterbi finds that

Key problem: exponentially many paths π

Unrolling an HMM

Conceptually, sometimes convenient Note exponentially many paths

Viterbi

 $v_l(i) =$ probability of the most probable path emitting x_1, x_2, \dots, x_i and ending in state l

HMM Casino Example

(Excel spreadsheet on web; download & play...)

HMM Casino Example

(Excel spreadsheet on web; download & play...)

Viterbi Traceback

Above finds *probability* of best path To find the path itself, trace *backward* to the state k attaining the max at each stage

$$v_l(i+1) = e_l(x_{i+1}) \cdot \max_k(v_k(i) a_{k,l})$$

Figure 3.5

Rolls: Visible data–300 rolls of a die as described above. Die: Hidden data–which die was actually used for that roll (F = fair, L = loaded). Viterbi: the prediction by the Viterbi algorithm is shown.

Most probable path ≠ Sequence of most probable states

Another example, based on casino dice again

Suppose $p(fair \leftrightarrow loaded)$ transitions are 10^{-99} and roll sequence is 1111166...666; then fair state is more likely all through 1's & well into the run of 6's, but eventually loaded wins, and the improbable F \rightarrow L transitions make Viterbi = *all* L.

Viterbi finds $\pi^* = \arg \max_{\pi} P(x, \pi)$

Most probable (Viterbi) *path* goes through 5, but most probable *state* at 2nd step is 6 (I.e., Viterbi is not the only interesting answer.)

An HMM (unrolled)

Emissions/sequence positions _____

Viterbi: best path to each state

The Forward Algorithm

For each state/time, want total probability of all paths leading to it, with given emissions

The Backward Algorithm

Similar: for each state/time, want total probability of all paths from it, with given emissions, conditional on that state.

In state k at step i?

 $P(x, \pi_i = k)$

$$= P(x_1, \dots, x_i, \pi_i = k) \cdot P(x_{i+1}, \dots, x_n \mid x_1, \dots, x_i, \pi_i = k)$$

$$= P(x_1, \dots, x_i, \pi_i = k) \cdot P(x_{i+1}, \dots, x_n \mid \pi_i = k)$$

$$= f_k(i) \cdot b_k(i)$$

$$P(\pi_i = k \mid x) = \frac{P(x, \pi_i = k)}{P(x)} = \frac{f_k(i) \cdot b_k(i)}{P(x)}$$

40

Posterior Decoding, I

Alternative 1: what's the most likely state at step i?

$$\hat{\pi}_i = \arg\max_k P(\pi_i = k \mid x)$$

Note: the sequence of most likely states \neq the most likely sequence of states. May not even be legal!

The Occasionally Dishonest Casino

1 fair die, 1 "loaded" die, occasionally swapped

Figure 3.5

Rolls: Visible data–300 rolls of a die as described above. Die: Hidden data–which die was actually used for that roll (F = fair, L = loaded). Viterbi: the prediction by the Viterbi algorithm is shown.

Posterior Decoding

Figure 3.6 The posterior probability of being in the state corresponding to the fair die in the casino example. The x axis shows the number of the roll. The shaded areas show when the roll was generated by the loaded die.

Posterior Decoding, II

Alternative 1: what's most likely state at step i?

$$\hat{\pi}_i = \arg\max_k P(\pi_i = k \mid x)$$

Alternative 2: given some function g(k) on states, what's its expectation. E.g., what's probability of "+" model in CpG HMM (g(k)=1 iff k is "+" state)?

$$G(i \mid x) = \sum_{k} P(\pi_i = k \mid x) \cdot g(k)$$

CpG Islands again

Data: 41 human sequences, totaling 60kbp, including 48 CpG islands of about 1kbp each
Viterbi: Post-process:
Found 46 of 48 46/48
plus 121 "false positives" 67 false pos
Posterior Decoding:
same 2 false negatives 46/48
plus 236 false positives 83 false pos

Post-process: merge within 500; discard < 500 46

Training

Given model topology & training sequences, learn transition and emission probabilities

If π known, then MLE is just frequency observed in training data

$$a_{k,l} = \frac{\text{count of } k \to l \text{ transitions}}{\text{count of } k \to \text{anywhere transitions}}$$

 $e_k(b) = \dots$

If π hidden, then use EM: given π , estimate θ ; given θ estimate π ; repeat $\left. \right\}^{2 \text{ ways}}$

pseudocounts?

+

Viterbi Training given π , estimate θ ; given θ estimate π ; repeat

Make initial estimates of parameters θ Find Viterbi path π for each training sequence Count transitions/emissions on those paths, getting new θ Repeat

Not rigorously optimizing desired likelihood, but still useful & commonly used. (Arguably good if you're doing Viterbi decoding.)

AKA "the forwardbackward alg"

Baum-Welch Training EM: given θ , estimate π ensemble; then re-estimate θ

$$P(\pi_i = k, \pi_{i+1} = l \mid x, \theta)$$

=
$$\frac{f_k(i \mid \theta) a_{k,l} e_l(x_{i+1}) b_l(i+1 \mid \theta)}{P(x \mid \theta)}$$

Estimated # of $k \rightarrow l$ transitions $\hat{A}_{k,l}$ on set of seqs x^j

$$= \sum_{\text{training seqs } x^j} \sum_i P(\pi_i = k, \ \pi_{i+1} = l \mid x^j, \theta)$$

New estimate $\hat{a}_{k,l} = \frac{\hat{A}_{k,l}}{\sum_l \hat{A}_{k,l}}$

Emissions: similar

True model 0.101 bits 300-roll est. 0.097 bits 30k-roll est. 0.100 bits (NB: overestimated)

From DEKM 50

0.1

0.10

0.1

0.10

0.48

Loaded

0.07

0.12

0.17

0.17

0.17

5: 0.17

6: 0.15

Fair

HMMs in Action: Pfam http://pfam.sanger.ac.uk/

Proteins fall into families, both across & within species Ex: Globins, GPCRs, Zinc fingers, Leucine zippers,...
Identifying family very useful: suggests function, etc.
So, search & alignment are both important
Q. Why not just use Blast/Smith-Waterman?
A. There is more info in *multiple* examples
One very successful approach: profile HMMs

Helix	AAAAAAAAAAAAAAA BBBBBBBBBBBBBBBBBCCCCCCCC
HBA_HUMAN	VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF
HBB_HUMAN	VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTORFFESF
MYG_PHYCA	VLSEGEWQLVLHVWAKVEADVAGHGQDILIRLFKSHPETLEKFDRF
GLB3_CHITP	DPVGILYAVFKADPSIMAKFTQF
GLB5_PETMA	PIVDTGSVAPLSAAEKTKIRSAWAPVYSTYETSGVDILVKFFTSTPAAQEFFPKF
LGB2_LUPLU	GALTESQAALVKSSWEEFNANIPKHTHRFFILVLEIAPAAKDLFS-F
GLB1_GLYDI	GLSAAQRQVIAATWKDIAGADNGAGVGKDCLIKFLSAHPQMAAVFG-F
Consensus	Ls vaWkv g.Lf.P. FF

Helix	DDDDDDEEEEEEEEEEEEEEEEEE	FFFFFFFFFFFF
HBA_HUMAN	-DLSHGSAQVKGHGKKVADALTNAVAHVD	DMPNALSALSDLHAHKL-
HBB_HUMAN	GDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLD	NLKGTFATLSELHCDKL-
MYG_PHYCA	KHLKTEAEMKASEDLKKHGVTVLTALGAILKKK-G	HHEAELKPLAQSHATKH-
GLB3_CHITP	AG-KDLESIKGTAPFETHANRIVGFFSKIIGELP	NIEADVNTFVASHKPRG-
GLB5_PETMA	KGLTTADQLKKSADVRWHAERIINAVNDAVASMDDTE	KMSMKLRDLSGKHAKSF-
LGB2_LUPLU	LK-GTSEVPQNNPELQAHAGKVFKLVYEAAIQLQVTGVV	VTDATLKNLGSVHVSKG-
GLB1_GLYDI	SGASDPGVAALGAKVLAQIGVAVSHLGDEG	KMVAQMKAVGVRHKGYGN
Consensus	. t vHg kv. a al d	.аl.1 н.

Helix	FFGGGGGGGGGGGGGGGGGGGG	нннннннннннннннннннн
HBA_HUMAN	-RVDPVNFKLLSHCLLVTLAAHLPA	EFTPAVHA <mark>S</mark> LDKFLASVSTVLTSKYR
HBB_HUMAN	-HVDPENFRLLGNVLVCVLAHHFGK	EFTPPVQAAYQKVVAGVANALAHKYH
MYG_PHYCA	-KIPIKYLEFISEAIIHVLHSRHPG	DFGADAQG <mark>A</mark> MNKALELFRKDIAAKYKELGYQG
GLB3_CHITP	VTHDQLNNFRAGFVSYMKAHT	DFA-GAEAAWGATLDTFFGMIFSKM
GLB5_PETMA	-QVDPQYFKVLAAVIADTVAAG	DAGFEKLMSMICILLRSAY
LGB2_LUPLU	VADAHFPVVKEAILKTIKEVVGA	KWSEELNS <mark>A</mark> WTIAYDELAIVIKKEMNDAA
GLB1_GLYDI	KHIKAQYFEPLGASLLSAMEHRIGG	KMNAAAKD <mark>A</mark> WAAAYADISGALISGLQS
Consensus	v. f l	f . a <mark>a.</mark> k l sky

Alignment of 7 globins. A-H mark 8 alpha helices. Consensus line: upper case = 6/7, lower = 4/7, dot=3/7. Could we have a profile (aka weight matrix) w/ indels?

Figure 5.2 The transition structure of a profile HMM.

- M_j: Match states (20 emission probabilities)
- I: Insert states (Background emission probabilities)
- Dj: Delete states (silent no emission)

Silent States

Using Profile HMM's

Search

Forward or Viterbi

Scoring

Log likelihood (length adjusted)

Log odds vs background

Z scores from either

Alignment

Viterbi

next slides

Likelihood vs Odds Scores

Figure 5.5 To the left the length-normalized LL score is shown as a function of sequence length. The right plot shows the same for the log-odds score.

Z-Scores

Figure 5.6 The Z-score calculated from the LL scores (left) and the log-odds (right).

From DEKM 57

Pfam Model Building

Hand-curated "seed" multiple alignments

- Train profile HMM from seed alignment
- Hand-chosen score threshold(s)
- Automatic classification/alignment of all other protein sequences
- Pfam 25.0 (March 2011, 12273 families; covers ~75% of human proteins)
- Pfam 27.0 (March 2013, 14831 families; \approx 90%)

HMM Summary

joint vs conditional probs

Inference

- Viterbi best single path
- Forward sum over all paths
- Backward similar
- Posterior decoding

Model building

Semi-supervised – typically fix architecture (e.g. profile

HMM), then learn parameters

Baum-Welch – training via EM and forward/backward

(aka the forward/backward algorithm)

Viterbi training – also "EM", but Viterbi-based

(max of products)

(sum of products)

HMM Summary (cont.)

Search:

Viterbi or forward

Scoring:

- Odds ratio to background
- Z-score
- E-values, etc., too

Excellent tools available (SAM, HMMer, Pfam, ...)

A very widely used tool for biosequence analysis