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Markov Models and Hidden 
Markov Models
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http://upload.wikimedia.org/wikipedia/commons/b/ba/Calico_cat
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Dosage Compensation 
and X-Inactivation

2 copies (mom/dad) of each chromosome 1-23
Mostly, both copies of each gene are expressed

E.g., A B O blood group defined by 2 alleles of 1 gene 

Women (XX) get double dose of X genes (vs XY)?
So, early in embryogenesis:

• One X randomly inactivated in each cell
• Choice maintained in daughter cells

Calico: a major coat color gene is on X

How?
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Reminder: Proteins “Read” DNA

E.g.:

Helix-Turn-Helix Leucine Zipper
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MyoD

http://www.rcsb.org/pdb/explore/jmol.do?structureId=1MDY&bionumber=1
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Down 
in the 
Groove
Different 
patterns of 
hydrophobic 
methyls, 
potential H 
bonds, etc. at 
edges of 
different base 
pairs. They’re 
accessible, 
esp. in major 
groove 
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cytosine

CH3

DNA Methylation
CpG  - 2 adjacent nts, same strand ���

(not Watson-Crick pair; “p” mnemonic for the ���
phosphodiester bond of the DNA  backbone)

C of CpG is often (70-80%) methylated in ���
mammals i.e., CH3 group added (both strands)

Why?  Generally silences transcription.  (Epigenetics) ���
X-inactivation, imprinting, repression of mobile elements, ���
some cancers, aging, and developmental differentiation

How?  DNA methyltransferases convert hemi- to fully-
methylated

Major exception: promoters of housekeeping genes
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Same 
Pairing
Methyl-C 
alters major 
groove 
profile (∴ TF 
binding), but 
not base-
pairing, 
transcription 
or replication

CH3

CH3
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cytosine

CH3

DNA Methylation–Why

In vertebrates, it generally silences transcription
(Epigenetics) X-inactivation, imprinting, repression of mobile ���
elements, cancers, aging, and developmental differentiation

E.g., if a stem cell divides, one daughter fated ���
to be liver, other kidney, need to 

(a)  turn off liver genes in kidney & vice versa, 
(b)  remember that through subsequent divisions

How?  One way:
(a)  Methylate genes, esp. promoters, to silence them
(b)  after ÷, DNA methyltransferases convert hemi- to fully-methylated���

(& deletion of methyltransferase is embrionic-lethal in mice)

Major exception: promoters of housekeeping genes
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“CpG Islands”
Methyl-C mutates to T relatively easily
Net: CpG is less common than ���

expected genome-wide:  ���
f(CpG) < f(C)*f(G)

BUT in some regions (e.g. active 
promoters), CpG remain 
unmethylated, so CpG → TpG less 
likely there: makes “CpG Islands”; 
often mark gene-rich regions

cytosine

CH3

thymine

CH3

NH3
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CpG Islands

CpG Islands
More CpG than elsewhere (say, CpG/GpC>50%)

More C & G than elsewhere, too (say, C+G>50%)

Typical length: few 100 to few 1000 bp

Questions
Is a  short sequence (say, 200 bp) a CpG island or not?

Given long sequence (say, 10-100kb), find CpG islands?
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Markov & Hidden 
Markov Models

References (see also online reading page): 
Eddy, "What is a hidden Markov model?" Nature 

Biotechnology, 22, #10 (2004) 1315-6.
Durbin, Eddy, Krogh and  Mitchison, “Biological 

Sequence Analysis”, Cambridge, 1998 (esp. chs 3, 5)
Rabiner, "A Tutorial on Hidden Markov Models and 

Selected Application in Speech Recognition," 
Proceedings of the IEEE, v 77 #2,Feb 1989, 
257-286 
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Independence

A key issue:  Previous models we’ve talked about 
assume independence of nucleotides in different 
positions - definitely unrealistic.
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A sequence                   of random variables is a 
k-th order Markov chain if, for all i, ith  value is 
independent of all but the previous k values: ���
���
���

Example 1: Uniform random ACGT
Example 2: Weight matrix model
Example 3: ACGT, but ↓ Pr(G following C)

Markov Chains

0th ���
order}

}

i-1 k typically ≪ i-1

1st ���
order
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A Markov Model (1st order)

States:  A,C,G,T
Emissions: corresponding letter
Transitions: ast = P(xi = t | xi-1 = s) 1st order
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A Markov Model (1st order)

States:  A,C,G,T
Emissions: corresponding letter
Transitions: ast = P(xi = t | xi-1 = s)
Begin/End states
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Pr of emitting sequence x
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Training
Max likelihood estimates for transition 

probabilities are just the frequencies of 
transitions when emitting the training 
sequences

E.g., from 48 CpG islands in 60k bp:

From DEKM 18



Log likelihood ratio of CpG model vs background model

Discrimination/Classification

From DEKM 19



CpG Island Scores

Figure 3.2  Histogram of length-normalized scores.  

CpG islands

Non-CpG

From DEKM 20



Questions

Q1: Given a short sequence, is it more likely from 
feature model or background model?  Above

Q2: Given a long sequence, where are the 
features in it (if any)

Approach 1:  score 100 bp (e.g.) windows
Pro: simple

Con: arbitrary, fixed length, inflexible

Approach 2:  combine +/- models.
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Combined Model

}

}

CpG + ���
model

CpG –���
model

Emphasis is “Which (hidden) state?” not “Which model?”
22



Hidden Markov Models���
(HMMs; Claude Shannon, 1948)
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1 fair die, 1 “loaded” die, occasionally swapped

The Occasionally 
Dishonest Casino
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Rolls 315116246446644245311321631164152133625144543631656626566666
Die FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLL
Viterbi FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLL

Rolls 651166453132651245636664631636663162326455236266666625151631
Die LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLFFFLLLLLLLLLLLLLLFFFFFFFFF
Viterbi LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLFFFFFFFF

Rolls 222555441666566563564324364131513465146353411126414626253356
Die FFFFFFFFLLLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLL
Viterbi FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFL

Rolls 366163666466232534413661661163252562462255265252266435353336
Die LLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Viterbi LLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

Rolls 233121625364414432335163243633665562466662632666612355245242
Die FFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF
Viterbi FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF

Figure 3.5  
Rolls: Visible data–300 rolls of a die as described above.
Die: Hidden data–which die was actually used for that roll (F = fair, L = loaded).  
Viterbi: the prediction by the Viterbi algorithm is shown.

From DEKM 25



Joint probability of a given path π & emission 
sequence x:���

But π is hidden; what to do?  Some alternatives:

 Most probable single path 

 Sequence of most probable states

Etc.

Inferring hidden stuff
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Viterbi finds:

Possibly there are 1099 paths of prob 10-99  ���
(If so, non-Viterbi approaches may be preferable.)

More commonly, one path (+ slight variants) 
dominate others; Viterbi finds that

Key problem: exponentially many paths π

The Viterbi Algorithm: ���
The most probable path
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L

F

L

F

L

F

L

F

t=0    t=1   t=2    t=3

...

...

  3       6      6       2   ...

Unrolling an HMM

Conceptually, sometimes convenient
Note exponentially many paths

28



Viterbi
probability of the most probable path 
emitting                    and ending in state l

 

Initialize:

General case:
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HMM Casino Example

(Excel spreadsheet on web; download & play…)
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HMM Casino Example

(Excel spreadsheet on web; download & play…)
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Viterbi Traceback

Above finds probability of best path 
To find the path itself, trace backward to the 
state k attaining the max at each stage
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Rolls 315116246446644245311321631164152133625144543631656626566666
Die FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLL
Viterbi FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLL

Rolls 651166453132651245636664631636663162326455236266666625151631
Die LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLFFFLLLLLLLLLLLLLLFFFFFFFFF
Viterbi LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLFFFFFFFF

Rolls 222555441666566563564324364131513465146353411126414626253356
Die FFFFFFFFLLLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLL
Viterbi FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFL

Rolls 366163666466232534413661661163252562462255265252266435353336
Die LLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Viterbi LLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

Rolls 233121625364414432335163243633665562466662632666612355245242
Die FFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF
Viterbi FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF

Figure 3.5  
Rolls: Visible data–300 rolls of a die as described above.
Die: Hidden data–which die was actually used for that roll (F = fair, L = loaded).  
Viterbi: the prediction by the Viterbi algorithm is shown.
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Most probable path ≠ Sequence 
of most probable states

Another example, based on casino dice again

Suppose p(fair↔loaded) transitions are 10-99 and 
roll sequence is 1111166…666; then fair state is 
more likely all through 1’s & well into the run of 
6’s, but eventually loaded wins, and the 
improbable F→L transitions make Viterbi = all L.

*   =  Viterbi

1 1 1 1 1 6 6 6 6 6
*   = max prob

* * * * * * * *

* *

L

F
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Viterbi finds

Most probable (Viterbi) path goes through 5, but 
most probable state at 2nd step is 6���
(I.e., Viterbi is not the only interesting answer.)

Is Viterbi “best”?
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x1 x2 x3 x4 

An HMM (unrolled)
States

Emissions/sequence positions
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x1 x2 x3 x4    x5 

Viterbi: best path to each state

Viterbi score:

Viterbi pathR:
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x1 x2 x3 x4 

The Forward Algorithm
For each 
state/time, 
want total 
probability 
of all paths 
leading to 
it, with 
given 
emissions
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x1 x2 x3 x4 

The Backward Algorithm
Similar: ���
for each 
state/time, 
want total 
probability 
of all paths 
from it, with 
given 
emissions, 
conditional 
on that 
state.
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In state k at step i ?
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Posterior Decoding, I
Alternative 1:  what’s the most likely state at step i?

Note: the sequence of most likely states ≠ the most 
likely sequence of states.  May not even be legal!
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1 fair die, 1 “loaded” die, occasionally swapped

The Occasionally 
Dishonest Casino
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Rolls 315116246446644245311321631164152133625144543631656626566666
Die FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLL
Viterbi FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLL

Rolls 651166453132651245636664631636663162326455236266666625151631
Die LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLFFFLLLLLLLLLLLLLLFFFFFFFFF
Viterbi LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLFFFFFFFF

Rolls 222555441666566563564324364131513465146353411126414626253356
Die FFFFFFFFLLLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLL
Viterbi FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFL

Rolls 366163666466232534413661661163252562462255265252266435353336
Die LLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Viterbi LLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

Rolls 233121625364414432335163243633665562466662632666612355245242
Die FFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF
Viterbi FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF

Figure 3.5  
Rolls: Visible data–300 rolls of a die as described above.
Die: Hidden data–which die was actually used for that roll (F = fair, L = loaded).  
Viterbi: the prediction by the Viterbi algorithm is shown.
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Posterior Decoding

From DEKM

Figure 3.6 The posterior probability of being in the state 
corresponding to the fair die in the casino example.  The x axis 
shows the number of the roll.  The shaded areas show when the 
roll was generated by the loaded die.
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Posterior Decoding, II
Alternative 1:  what’s most likely state at step i ?

Alternative 2:  given some function g(k) on states, 
what’s its expectation.  E.g., what’s probability of  “+” 
model in CpG HMM  (g(k)=1 iff k is “+” state)?
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Post-process: merge within 
500; discard < 500

CpG Islands again

Data: 41 human sequences, totaling 60kbp, 
including 48 CpG islands of about 1kbp each

Viterbi: Post-process: ���
Found 46 of 48 46/48���
plus 121 “false positives” 67 false pos

Posterior Decoding: ���
same 2 false negatives 46/48���
plus 236 false positives 83 false pos
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Given model topology & training sequences, ���
learn transition and emission probabilities

If π known, then MLE is just frequency observed 
in training data���
���

If π hidden, then use EM: ���
given π, estimate θ; given θ estimate π; repeat } 2 ways

+
 p

se
ud

oc
ou

nt
s?

Training
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Viterbi Training���
given π, estimate θ; given θ estimate π; repeat

Make initial estimates of parameters θ
Find Viterbi path π for each training sequence
Count transitions/emissions on those paths, 

getting new θ
Repeat���

Not rigorously optimizing desired likelihood, but 
still useful & commonly used. ���
(Arguably good if you’re doing Viterbi decoding.)
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Baum-Welch Training���
EM: given θ, estimate π ensemble; then re-estimate θ  

AKA “the forward-
backward alg”

on set of seqs xj
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True Model B-W Learned Model
(300 rolls)

B-W Learned Model
(30,000 rolls)

Log-odds (vs all F) per roll
True model 0.101 bits
300-roll est. 0.097 bits
30k-roll est. 0.100 bits

(NB: overestimated)
From DEKM 50



HMMs in Action: Pfam���
http://pfam.sanger.ac.uk/

Proteins fall into families, both across & within species
Ex: Globins, GPCRs, Zinc fingers, Leucine zippers,...

Identifying family very useful: suggests function, etc.
So, search & alignment are both important
Q. Why not just use Blast/Smith-Waterman?
A. There is more info in multiple examples
One very successful approach: profile HMMs
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Alignment of 7 globins.  A-H mark 8 alpha helices.  
Consensus line: upper case = 6/7, lower = 4/7, dot=3/7.
Could we have a profile (aka weight matrix) w/ indels?
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Mj: Match states (20 emission probabilities)
Ij: Insert states (Background emission probabilities)
Dj: Delete states (silent - no emission)

Profile Hmm Structure

From DEKM 53



Silent States

Example: chain of ���
states, can skip ���
some

Problem: many parameters.
A solution: chain ���

of “silent” states;���
fewer parameters ���
(but less detailed control)

Algorithms: basically the same.
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Using Profile HMM’s
Search

Forward or Viterbi

Scoring

Log likelihood (length adjusted)

Log odds vs background

Z scores from either

Alignment

Viterbi

} next slides
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Likelihood vs Odds Scores

From DEKM 56



Z-Scores

From DEKM 57



Pfam Model Building

Hand-curated “seed” multiple alignments
Train profile HMM from seed alignment
Hand-chosen score threshold(s)
Automatic classification/alignment of all other 

protein sequences
Pfam 25.0 (March 2011, 12273 families; covers 

~75% of human proteins)
Pfam 27.0 (March 2013, 14831 families; ≈ 90%)
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HMM Summary
Inference

Viterbi – best single path (max of products)

Forward – sum over all paths (sum of products)

Backward – similar
Posterior decoding

Model building
Semi-supervised – typically fix architecture (e.g. profile 

HMM), then learn parameters
Baum-Welch – training via EM and forward/backward 

(aka the forward/backward algorithm)
Viterbi training – also “EM”, but Viterbi-based
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HMM Summary (cont.)
Search: 

Viterbi or forward
Scoring:

Odds ratio to background
Z-score
E-values, etc., too

Excellent tools available (SAM, HMMer, Pfam, …)
A very widely used tool for biosequence analysis
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