Bias Correction in RNAseq

Walter L. (Larry) Ruzzo

Computer Science and Engineering
Genome Sciences (Adjunct)
University of Washington
Fred Hutchinson Cancer Research Center (Joint Member)
Seattle, WA, USA

BIOINFORMATICS

ORIGINAL PAPER

Vol. 28 no. 7 2012, pages 921–928 doi:10.1093/bioinformatics/bts055

Gene expression

Advance Access publication January 28, 2012

A new approach to bias correction in RNA-Seq

Daniel C. Jones^{1,*}, Walter L. Ruzzo^{1,2,3}, Xinxia Peng⁴ and Michael G. Katze⁴

*Separtment of Computer Science and Engineering, University of Washington, Seattle, WA 98195-2350,
²Department of Genome Sciences, University of Washington, Seattle, WA 98195-5065, ³Fred Hutchinson Cancer Research Center, Seattle, WA 98109 and ⁴Department of Microbiology, University of Washington, Seattle, WA

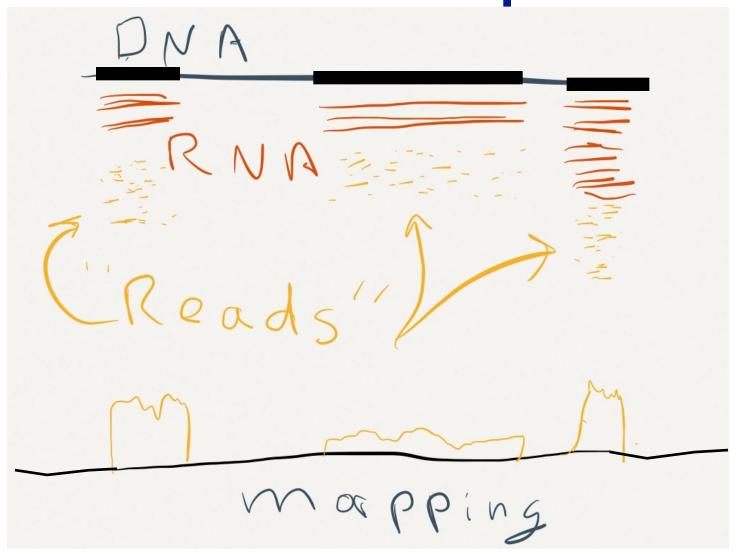
Associate Editor: Alex Bateman

ABSTRACT

Motivation: Quantification of sequence abundance in RNA-Seq experiments is often conflated by protocol-specific sequence bias.

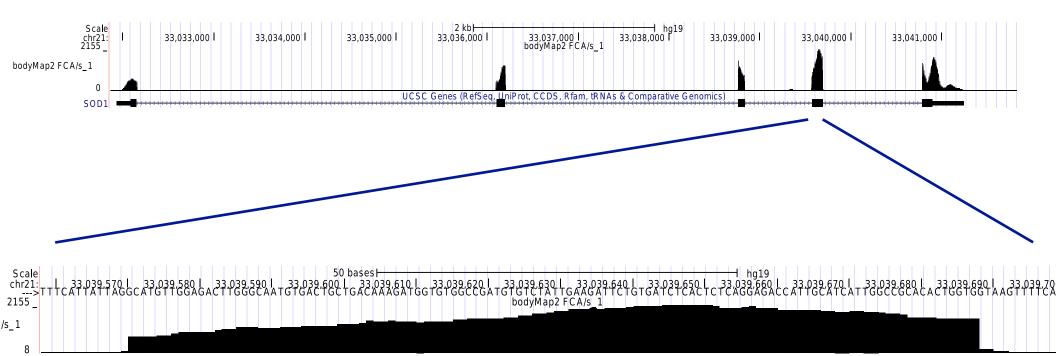
These biases may adversely affi

RNAseq

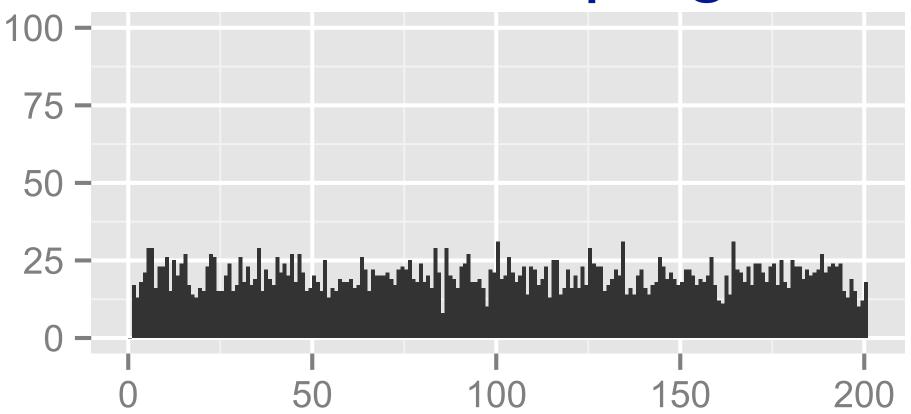


Extract RNA. Fragment it. Sequence it. Map it. Count it. A random sampling process.

Example



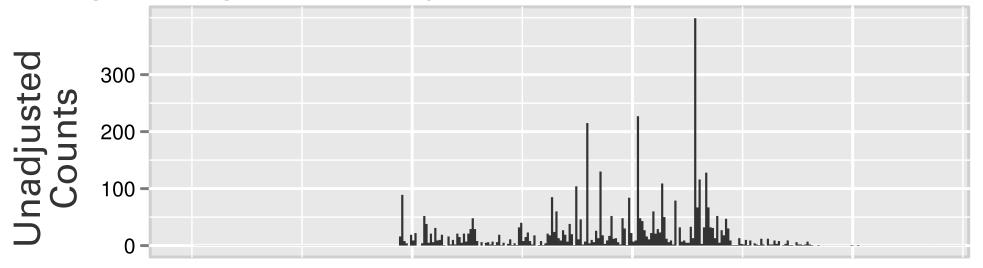
What we expect: Uniform Sampling

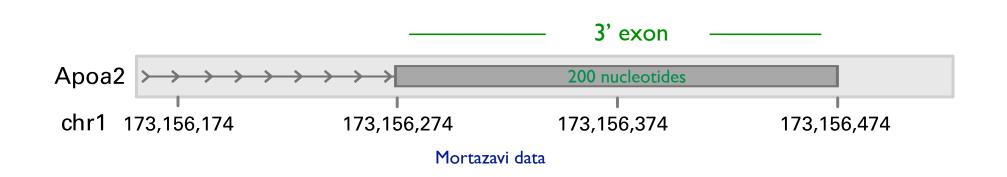


Uniform sampling of 4000 "reads" across a 200 bp "exon." Average 20 \pm 4.7 per position, min \approx 9, max \approx 33 l.e., as expected, we see $\approx \mu \pm 3\sigma$ in 200 samples

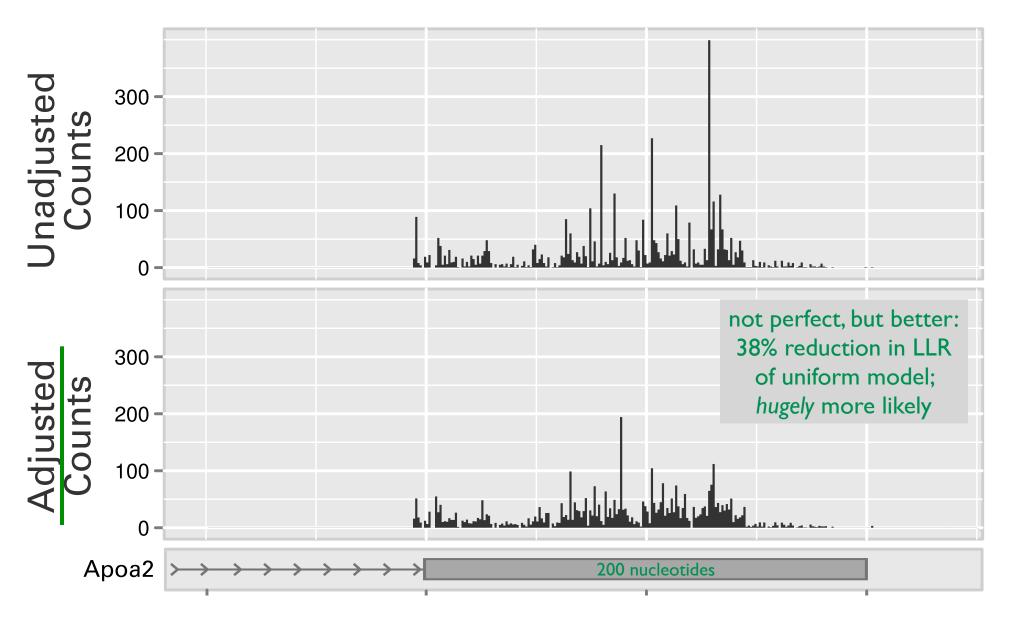
What we get: highly non-uniform coverage

E.g., assuming uniform, the 8 peaks above 100 are $\gtrsim +10\sigma$ above mean



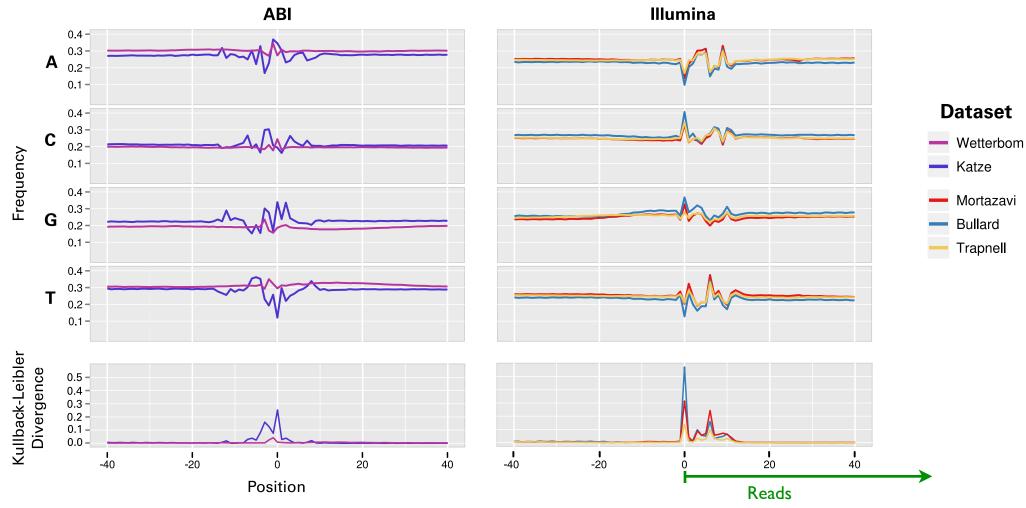


What we get: highly non-uniform coverage



The Good News: we can (partially) correct the bias

Bias is sequence-dependent



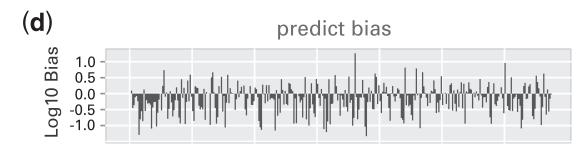
and platform/sample-dependent

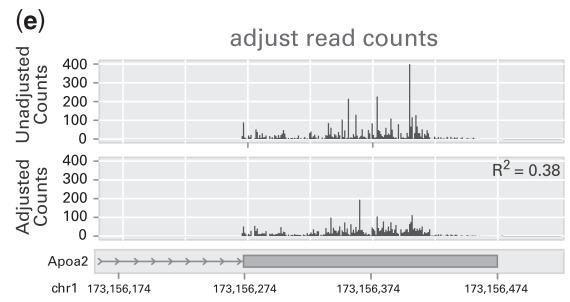
Fitting a model of the sequence surrounding read starts lets us predict which positions have more reads.

(a) sample foreground sequences

(b) sample background sequences

(c) train Bayesian network





Want a probability distribution over k-mers, $k \approx 40$

Some obvious choices

Full joint distribution: 4^k-1 parameters

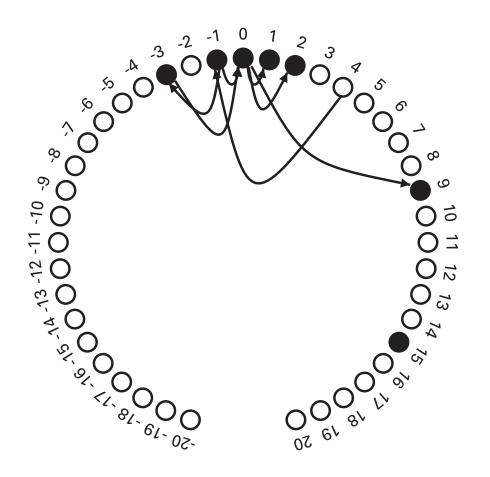
PWM (0-th order Markov): (4-1)•k parameters

Something intermediate

Directed Bayes network

Form of the models:

Directed Bayes nets



Wetterbom (282 parameters)

One "node" per nucleotide, ±20 bp of read start

- Filled node means that position is biased
- Arrow i → j means letter at position i modifies bias at j
- For both, numeric parameters say how much How-optimize:

$$\ell = \sum_{i=1}^{n} \log \Pr[x_i | s_i] = \sum_{i=1}^{n} \log \frac{\Pr[s_i | x_i] \Pr[x_i]}{\sum_{x \in \{0,1\}} \Pr[s_i | x] \Pr[x]}$$

Formally...

A reasonable definition of unbiasedness:

Pr(read at i) = Pr(read at i|sequence at i)

From Bayes...

$$\Pr(\text{read at } i|\text{sequence at } i) = \frac{\Pr(\text{sequence at } i|\text{read at } i) \Pr(\text{read at } i)}{\Pr(\text{sequence at } i)}$$

So we might define **bias** as

bias at position
$$i = \frac{\Pr(\text{sequence at } i | \text{read at } i)}{\Pr(\text{sequence at } i)}$$

Conditional Log-Likelihood

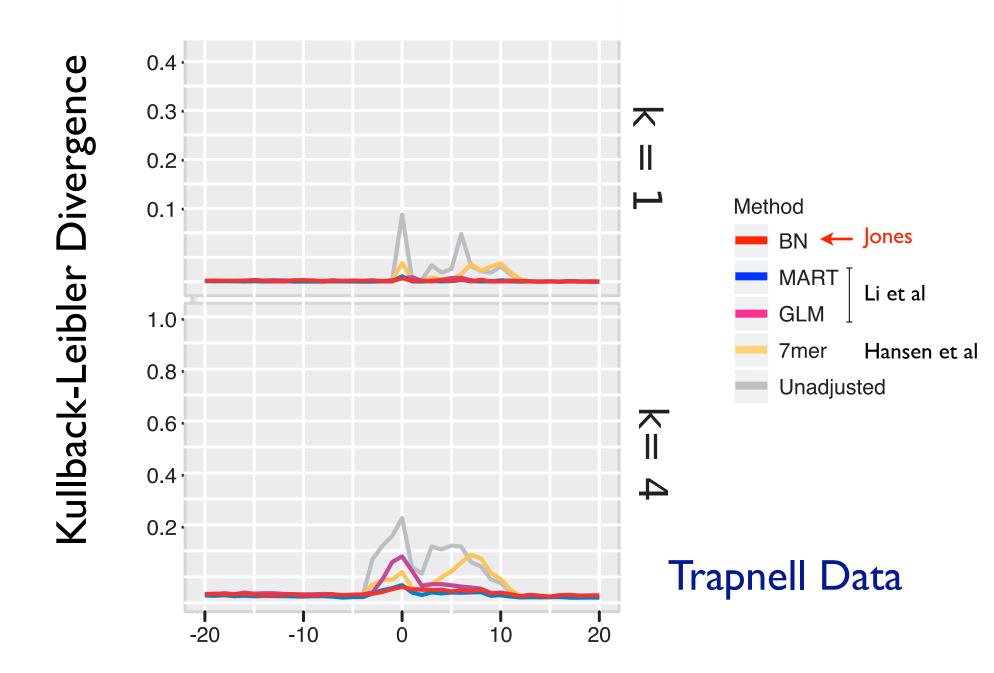
Find a graph that maximizes conditional log-likelihood.

$$CLL = \sum_{i=1}^{n} Pr(x_i|s_i)$$

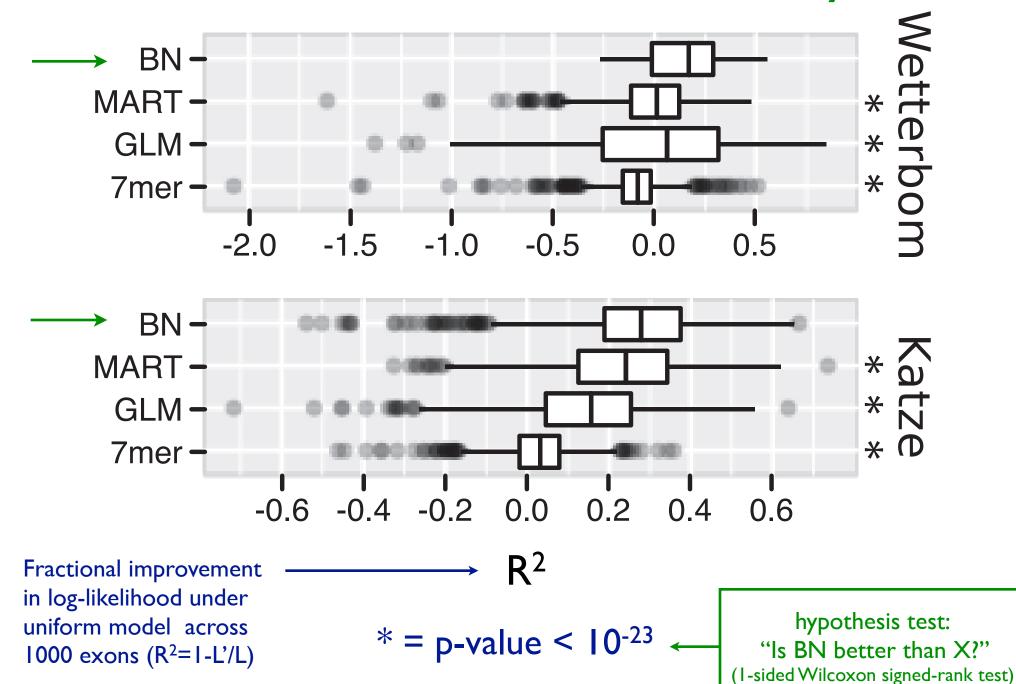
We need to penalize for model complexity as well.

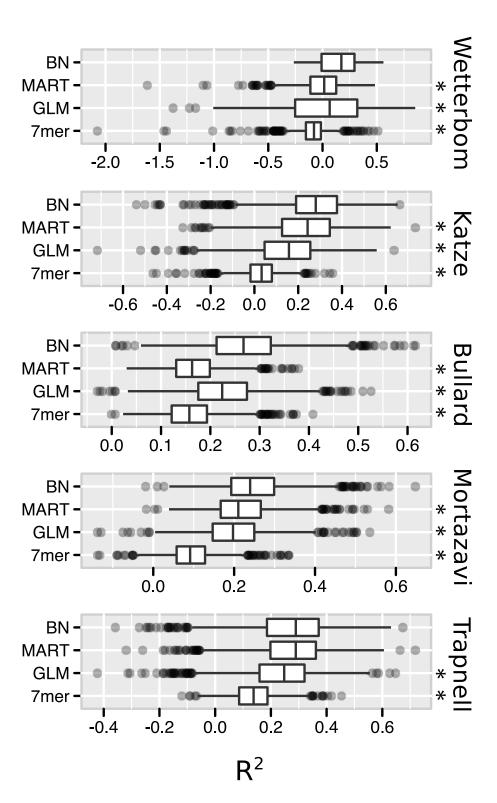
$$CLL' = 2 \sum_{i=1}^{n} \operatorname{Pr}(x_i|s_i) - m \log n$$

Result – Increased Uniformity



Result – Increased Uniformity





"First, do no harm"

Theorem:

The probability of "false bias discovery," i.e., of learning a non-empty model from *n* reads sampled from *un*biased data is less than

$$I - (\Pr(X < 3 \log n))^{2h}$$

where h = number of nucleotides in the model and X is a random variable that (asymptotically in n) is χ^2 with 3 degrees of freedom. (E[X] = 3)

how different are two distributions?

Given: r-sided die, with probs $p_1...p_r$ of each face. Roll it n=10,000 times; observed frequencies = $q_1, ..., q_r$, (the MLEs for the unknown q_i 's). How close is p_i to q_i ?

Kullback-Leibler divergence, also known as relative entropy, of Q with respect to P is defined as

$$H(Q||P) = \sum_{i} q_{i} \ln \frac{q_{i}}{p_{i}}$$

where q_i (p_i) is the probability of observing the ith event according to the distribution Q (resp., P), and the summation is taken over all events in the sample space (e.g., all k-mers). In some sense, this is a measure of the dissimilarity between the distributions: if $p_i \approx q_i$ everywhere, their log ratios will be near zero and H will be small; as q_i and p_i diverge, their log ratios will deviate from zero and H will increase.

Fancy name, simple idea: H(Q||P) is just the expected per-sample contribution to log-likelihood ratio test for "was X sampled from H_0 : P vs H_1 : Q?"

So, assuming the null hypothesis is false, in order for it to be rejected with say, 1000:1 odds, one should choose m to be inversely proportional to H(Q||P):

$$mH(Q||P) \ge \ln 1000$$
$$m \ge \frac{\ln 1000}{H(Q||P)}$$

Continuing the notation above, suppose P as an unknown distribution with parameters p_1, \ldots, p_r , $\sum p_i = 1$ where r is the number of points in the sample space (e.g. $r = 4^k$ in the case of k-mers). Given a random sample X_1, X_2, \ldots, X_r of size $n = \sum_i X_i$ from P, it is well known that the maximum likelihood estimators for the parameters are $q_i = \frac{X_i}{n} \approx p_i$. How good an estimate for P is this distribution Q? The estimators are unbiased:

$$E[q_i] = E\left[\frac{X_i}{n}\right] = \frac{E[X_i]}{n} = \frac{np_i}{n} = p_i$$

and the standard deviation of each estimate is proportional to $1/\sqrt{n}$, so these estimates are increasingly accurate as the sample size increases. A more quantitative assessment of the accuracy of the estimator is obtained by evaluating the KL divergence:

$$H(Q||P) = \sum_{i=1}^{r} q_i \ln \frac{q_i}{p_i} = \sum_{i=1}^{r} q_i \ln \left(1 + \frac{q_i - p_i}{p_i}\right)$$

Using the first two terms of the Taylor series for ln(1 + x), this is

$$H(Q||P) \approx \sum_{i=1}^{r} q_i \left(\frac{q_i - p_i}{p_i} - \frac{1}{2} \left(\frac{q_i - p_i}{p_i} \right)^2 \right)$$
$$= \sum_{i=1}^{r} q_i \frac{q_i - p_i}{p_i} - \frac{q_i}{2p_i} \frac{(q_i - p_i)^2}{p_i}$$

Since $\sum_{i=1}^{r} q_i = \sum_{i=1}^{r} p_i = 1$, $\sum_{i=1}^{r} p_i \frac{q_i - p_i}{p_i} = 0$, so

$$H(Q||P) \approx \sum_{i=1}^{r} q_{i} \frac{q_{i} - p_{i}}{p_{i}} - p_{i} \frac{q_{i} - p_{i}}{p_{i}} - \frac{q_{i}}{2p_{i}} \frac{(q_{i} - p_{i})^{2}}{p_{i}}$$

$$= \sum_{i=1}^{r} \frac{(q_{i} - p_{i})^{2}}{p_{i}} \left(1 - \frac{q_{i}}{2p_{i}}\right)$$

$$\approx \frac{1}{2} \sum_{i=1}^{r} \frac{(q_{i} - p_{i})^{2}}{p_{i}}$$

since $q_i \approx p_i$. Multiplying by n^2/n^2 we have,

$$H(Q||P) \approx \frac{1}{2n} \sum_{i=1}^{r} \frac{(nq_i - np_i)^2}{np_i}$$
$$= \frac{1}{2n} \sum_{i=1}^{r} \frac{(X_i - E[X_i])^2}{E[X_i]}$$

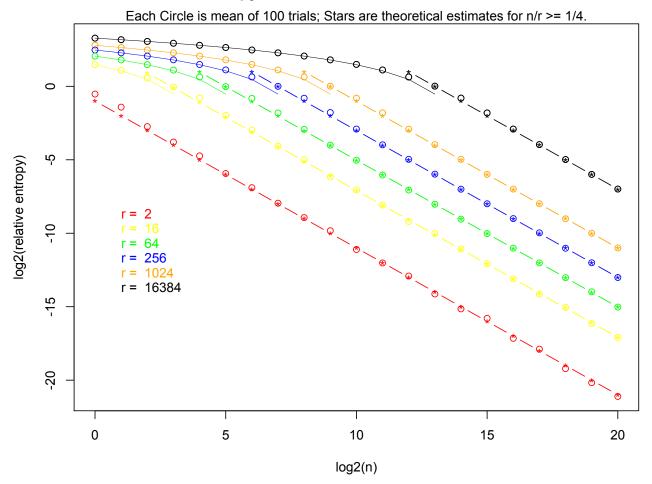
... and after a modicum of algebra:

$$E[H(Q||P)] \approx \frac{r-1}{2n} \longleftarrow$$

... which empirically is a good approximation:

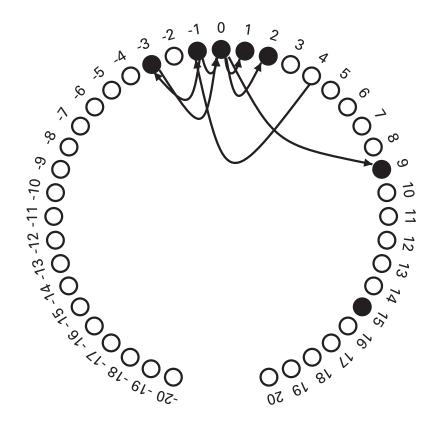
LLR of error rises with number of parameters r, declines with size of training set n

Relative Entropy, wrt Uniform, of Observed n balls in r bins

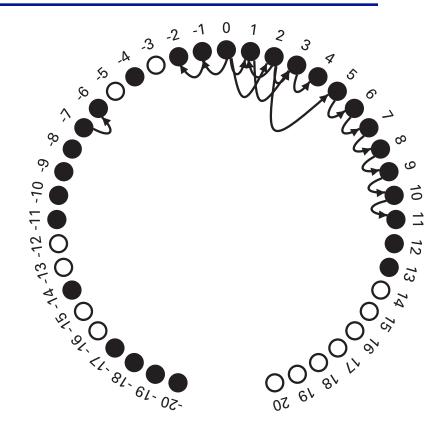


some questions

What is the chance that we will learn an incorrect model? E.g., learn a biased model from unbiased input?

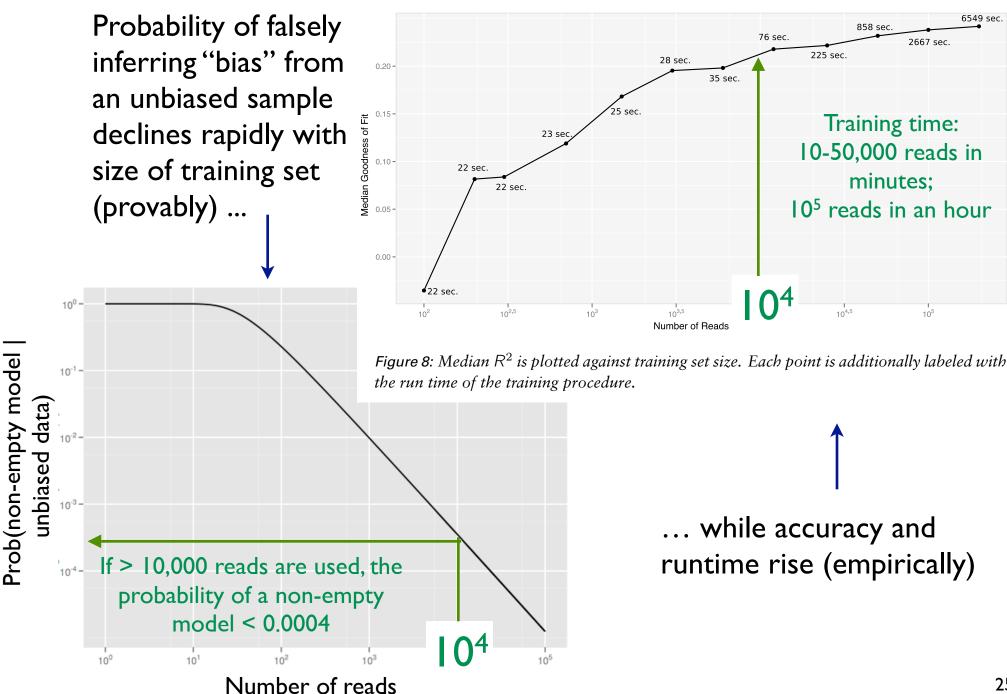


Wetterbom (282 parameters)



Bullard (696 parameters)

How does the amount of training data effect accuracy of the resulting model?



Possible objection to the approach:

Typical expts compare gene A in sample I to itself in sample 2. Gene A's sequence is unchanged, "so the bias is the same" & correction is useless/dangerous

Responses:

Bias is sample-dependent, to an unknown degree

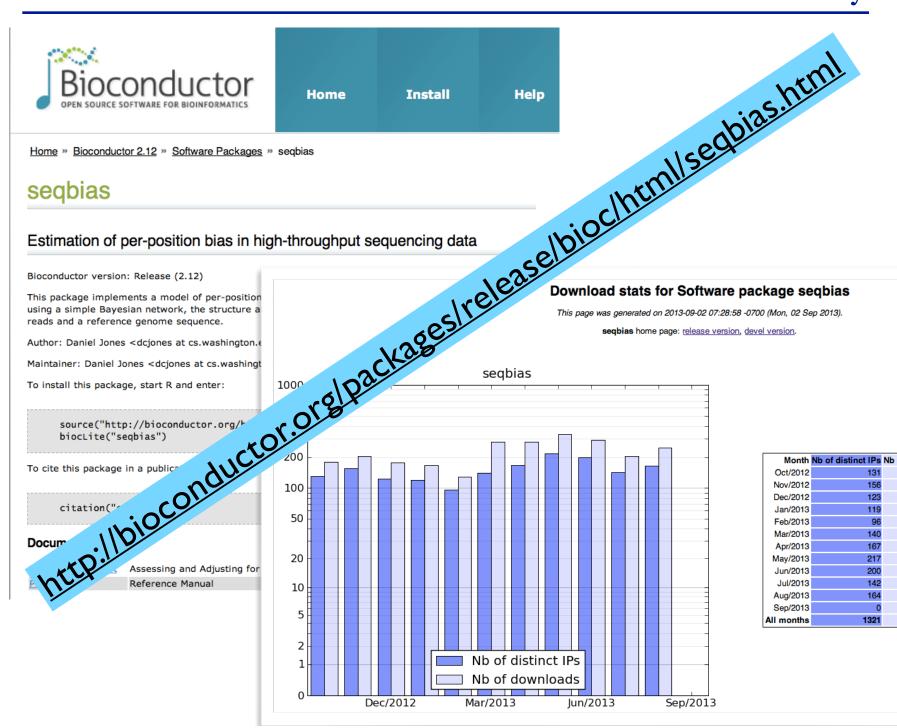
SNPs and/or alternative splicing might have a big effect, if samples I & 2 are from different individuals and/or engender changes in isoform usage

Some experiments are *not "typical,"* e.g., imprinting, allele specific expression, xenograft studies

Strong control of "false bias discovery" \Rightarrow little risk

In Progress: Isolator

Soon to be the world's best isoform quantitation tool



Month	Nb of distinct IPs	Nb of downloads
Oct/2012	131	180
Nov/2012	156	204
Dec/2012	123	176
Jan/2013	119	168
Feb/2013	96	129
Mar/2013	140	282
Apr/2013	167	280
May/2013	217	333
Jun/2013	200	293
Jul/2013	142	205
Aug/2013	164	248
Sep/2013	0	0
III months	1321	2498