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Outline
Previously: Learning from data	


  MLE: Max Likelihood Estimators	

  EM: Expectation Maximization (MLE w/hidden data)	


These Slides: 	

    Bio: Expression & regulation	


Expression: creation of gene products	

Regulation: when/where/how much of each gene 
product; complex and critical	


    Comp: using MLE/EM to find regulatory motifs in      
         biological sequence data
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Gene Expression & 
Regulation
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Gene Expression

Recall a gene is a DNA sequence for a protein 	

To say a gene is expressed means that it	


is transcribed from DNA to RNA	

the mRNA is processed in various ways	

is exported from the nucleus (eukaryotes)	

is translated into protein	


A key point: not all genes are expressed all the 
time, in all cells, or at equal levels
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Alberts, et al.

RNA 
Transcription
Some genes heavily transcribed 

(many are not)
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Regulation
In most cells, pro- or eukaryote, easily a 10,000-fold 
difference between least- and most-highly expressed 
genes	

Regulation happens at all steps.  E.g., some genes are 
highly transcribed, some are not transcribed at all, 
some transcripts can be sequestered then released, 
or rapidly degraded, some are weakly translated, 
some are very actively translated, ...	

Below, focus on 1st step only:  
  ✦ transcriptional regulation

���6



 E. coli growth 
on  glucose + lactose

http://en.wikipedia.org/wiki/Lac_operon
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(DNA)	

!
!
!
!

(RNA)
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1965 Nobel Prize 
Physiology or Medicine

François Jacob,  Jacques Monod,  André Lwoff	


1920-2013          1910-1976              1902-1994
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The sea urchin Strongylocentrotus purpuratus
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Sea Urchin - Endo16
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DNA Binding Proteins

A variety of DNA binding proteins (so-called 
“transcription factors”;  a significant fraction, 
perhaps 5-10%, of all human proteins) 
modulate transcription of protein coding 
genes

���14



The Double Helix

Los Alamos Science
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In the 
groove
Different 
patterns of 
potential H 
bonds at 
edges of 
different base 
pairs, 
accessible esp. 
in major 
groove
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Helix-Turn-Helix DNA Binding Motif
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H-T-H Dimers

Bind 2 DNA patches, ~ 1 turn apart	

Increases both specificity and affinity
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Zinc Finger Motif
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Leucine Zipper Motif

Homo-/hetero-dimers 
and combinatorial 

control

Alberts, et al.
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MyoD

http://www.rcsb.org/pdb/explore/jmol.do?structureId=1MDY&bionumber=1
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We understand some  
Protein/DNA interactions 
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But the overall DNA binding 
“code” still defies prediction

CAP
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16

Summary

Proteins can bind DNA to regulate gene 
expression (i.e., production of other 
proteins & themselves)

This is widespread 

Complex combinatorial control is possible

But it’s not the only way to do this...
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Sequence Motifs
Motif:  “a recurring salient thematic element”	


Last few slides described structural motifs in 
proteins	


Equally interesting are the sequence motifs in 
DNA to which these proteins bind - e.g. , one 
leucine zipper dimer might bind (with varying 
affinities) to dozens or hundreds of similar 
sequences

���25



DNA binding site 
summary

Complex “code”	


Short patches (4-8 bp)	


Often near each other (1 turn = 10 bp)	


Often reverse-complements (dimer symmetry)	


Not perfect matches
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E. coli Promoters
“TATA Box”  ~ 10bp upstream of 
transcription start	

How to define it?	


Consensus is TATAAT	

BUT all differ from it	

Allow k mismatches?	

Equally weighted?	

Wildcards like R,Y?  ({A,G}, {C,T}, resp.)

TACGAT!
TAAAAT!
TATACT!
GATAAT!
TATGAT!
TATGTT
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E. coli Promoters
“TATA Box” - consensus TATAAT  
   ~10bp upstream of transcription start	

Not exact: of 168 studied (mid 80’s)	

– nearly all had 2/3 of TAxyzT	

– 80-90% had all 3	

– 50% agreed in each of x,y,z	

– no perfect match	


Other common features at -35, etc.
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TATA Box Frequencies

pos!
base       1 2 3 4 5 6

A 2 95 26 59 51 1

C 9 2 14 13 20 3

G 10 1 16 15 13 0

T 79 3 44 13 17 96
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TATA Scores 
A “Weight Matrix Model” or “WMM”
pos!

base       1 2 3 4 5 6

A -36 19 1 12 10 -46

C -15 -36 -8 -9 -3 -31

G -13 -46 -6 -7 -9 -46(?)

T 17 -31 8 -9 -6 19
score = 10 log2 foreground:background odds ratio, rounded ���30



A -36 19 1 12 10 -46
C -15 -36 -8 -9 -3 -31
G -13 -46 -6 -7 -9 -46
T 17 -31 8 -9 -6 19

A -36 19 1 12 10 -46
C -15 -36 -8 -9 -3 -31
G -13 -46 -6 -7 -9 -46
T 17 -31 8 -9 -6 19

A -36 19 1 12 10 -46
C -15 -36 -8 -9 -3 -31
G -13 -46 -6 -7 -9 -46
T 17 -31 8 -9 -6 19

Scanning for TATA

Stormo, Ann. Rev. Biophys.  Biophys Chem, 17, 1988, 241-263

= -91

= -90

= 85

A C T A T A A T C G

A C T A T A A T C G

A C T A T A A T C G
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Scanning for TATA 

A C T A T A A T C G A T C G A T G C T A G C A T G C G G A T A T G A T

-1
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0
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0
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23

50

66

See also slide 58
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TATA Scan at 2 genes
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LacZ
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Score Distribution 
(Simulated)
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Weight Matrices: 
Statistics

Assume:	


fb,i	
= frequency of base b in position i in TATA	
 

fb	
 = frequency of base b in all sequences	


Log likelihood ratio, given S = B1B2...B6:
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Assumes  independence
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Neyman-Pearson

Given a sample x1, x2, ..., xn, from a distribution  
f(...|Θ) with parameter Θ, want to test 
hypothesis Θ = θ1 vs Θ = θ2.	


Might as well look at likelihood ratio:	

!    f(x1, x2, ..., xn|θ1)  
    f(x1, x2, ..., xn|θ2) 
!(or log likelihood ratio)

>  τ
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Score Distribution 
(Simulated)
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What’s best WMM?

Given, say, 168 sequences s1, s2, ..., sk of length 6, 
assumed to be generated at random 
according to a WMM defined by 6 x (4-1) 
parameters θ, what’s the best θ?	


E.g., what’s MLE for θ given data s1, s2, ..., sk?	


Answer: like coin flips or dice rolls, count 
frequencies per position (see HW?)
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Weight Matrices: 
Chemistry

Experiments show ~80% correlation of log 
likelihood weight matrix scores to measured 
binding energy of RNA polymerase to 
variations on TATAAT consensus 
[Stormo & Fields]
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ATG	

ATG	

ATG	

ATG	

ATG	

GTG	

GTG	

TTG

Freq.  Col 1 Col 2 Col 3
A 0.625 0 0
C 0 0 0
G 0.25 0 1
T 0.125 1 0

LLR  Col 1 Col 2 Col 3
A 1.32 -∞ -∞
C -∞ -∞ -∞
G 0 -∞ 2
T -1 2 -∞

Another WMM example

log2
fxi,i

fxi

, fxi =
1
4

8 Sequences:

Log-Likelihood Ratio:
(uniform 
background)
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• E. coli - DNA approximately 25%  A, C, G, T	


• M. jannaschi - 68% A-T,  32% G-C	


LLR from previous  
example, assuming 
!

!

!

e.g., G in col 3 is 8 x more likely via WMM 
than background, so (log2) score = 3 (bits).

LLR  Col 1 Col 2 Col 3
A 0.74 -∞ -∞
C -∞ -∞ -∞
G 1 -∞ 3
T -1.58 1.42 -∞

Non-uniform Background

fA = fT = 3/8
fC = fG = 1/8
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AKA Kullback-Liebler Divergence,  
AKA Information Content	


Given distributions P, Q 
!

!

!
Notes:  
   

Relative Entropy

H(P ||Q) =
∑

x∈Ω

P (x) log
P (x)
Q(x)

Undefined if 0 = Q(x) < P (x)

Let P (x) log
P (x)
Q(x)

= 0 if P (x) = 0 [since lim
y→0

y log y = 0]

≥ 0

Intuitively “distance”, 
but technically not, 
since it’s asymmetric
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WMM: How “Informative”? 
Mean score of site vs bkg?
For any fixed length sequence x, let 
P(x)  = Prob. of x according to WMM 
Q(x) = Prob. of x according to background	

Relative Entropy: 
!

!

H(P||Q) is expected log likelihood score of a 
sequence randomly chosen from WMM (wrt background);  
-H(Q||P) is expected score of Background (wrt WMM)	


Expected score difference: H(P||Q) + H(Q||P)

H(P ||Q) =
∑

x∈Ω

P (x) log2
P (x)
Q(x)

H(P||Q)-H(Q||P)
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WMM Scores vs 
Relative Entropy
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-H(Q||P) = -6.8

H(P||Q) = 5.0

On average, foreground model scores > background by 11.8 bits 
(score difference of 118 on 10x scale used in examples above). ���44



For a WMM: 
!

!

where Pi and Qi are the WMM/background 

distributions for column i.	


!

Proof: exercise	


Hint: Use the assumption of independence 
between WMM columns

H(P ||Q) =
∑

i H(Pi||Qi)
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Freq.  Col 1 Col 2 Col 3
A 0.625 0 0
C 0 0 0
G 0.25 0 1
T 0.125 1 0

LLR  Col 1 Col 2 Col 3
A 1.32 -∞ -∞
C -∞ -∞ -∞
G 0 -∞ 2
T -1 2 -∞

RelEnt 0.7 2 2 4.7

LLR  Col 1 Col 2 Col 3
A 0.74 -∞ -∞
C -∞ -∞ -∞
G 1 -∞ 3
T -1.58 1.42 -∞

RelEnt 0.51 1.42 3 4.93

WMM Example, cont.

Uniform Non-uniform
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Pseudocounts

Are the -∞’s a problem?	

Certain that a given residue never occurs  
in a given position?  Then -∞ just right.	


Else, it may be a small-sample artifact	


Typical fix: add a pseudocount to each observed 
count—small constant (e.g., .5, 1) 	


Sounds ad hoc; there is a Bayesian justification
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WMM Summary

Weight Matrix Model (aka Position Weight Matrix, PWM, 
Position Specific Scoring Matrix, PSSM, “possum”, 0th order 
Markov model)	


Simple statistical model assuming independence 
between adjacent positions	


To build: count (+ pseudocount) letter frequency per 
position, log likelihood ratio to background	


To scan: add LLRs per position, compare to threshold	

Generalizations to higher order models (i.e., letter 

frequency per position, conditional on neighbor) also 
possible, with enough training data (kth order MM)
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How-to Questions

Given aligned motif instances, build model?	

Frequency counts (above, maybe w/ pseudocounts)	


Given a model, find (probable) instances	

Scanning, as above	


Given unaligned strings thought to contain a 
motif, find it?  (e.g., upstream regions of co-
expressed genes)	


Hard ... rest of lecture.
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Motif Discovery

Unfortunately, finding a site of max relative 
entropy in a set of unaligned sequences is NP-
hard [Akutsu]
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Motif Discovery:  
4 example approaches
Brute Force	


Greedy search	


Expectation Maximization	


Gibbs sampler	
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Brute Force
Input:	


Motif length L, plus sequences s1, s2, ..., sk (all of length n+L-1, 
say), each with one instance of an unknown motif	


Algorithm:	

Build all k-tuples of length L subsequences, one from each of 
s1, s2, ..., sk (nk such tuples)	

Compute relative entropy of each	

Pick best
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Brute Force, II
Input:	


Motif length L, plus seqs s1, s2, ..., sk (all of length n+L-1, say), 
each with one instance of an unknown motif	


Algorithm in more detail:	


Build singletons: each len L subseq of each s1, s2, ..., sk (nk sets)	


Extend to pairs: len L subseqs of each pair of seqs (n2(  ) sets)	


Then triples:  len L subseqs of each triple of seqs (n3(  ) sets)	


Repeat until all have k sequences (nk(  ) sets)	


(n+1)k in total; compute relative entropy of each; pick best

pr
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k	

3

k	

k
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Example

Three sequences (A, B, C), each with  
two possible motif positions (0,1)

A0 A1 B0 B1 C0 C1

A0,B0 A0,B1 A0, C0 A0, C1 A1, B0 A1, B1 A1,C0 A1, C1 B0, C0 B0, C1 B1,C0 B1,C1

∅

A0, B0, 
C0

A0, B0, 
C1

A0, B1, 
C0

A0, B1, 
C1

A1, B0, 
C0

A1, B0, 
C1

A1, B1, 
C0

A1, B1, 
C1
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Greedy Best-First 
[Hertz, Hartzell & Stormo, 1989, 1990]

Input:	

Sequences s1, s2, ..., sk; motif length L; 	


“breadth” d, say d = 1000	

Algorithm:	


As in brute, but discard all but best d  
relative entropies at each stage

us
ua

l  
“g

re
ed

y”
  p

ro
bl

em
s

X

XX

d=
2
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Yi,j =
{

1 if motif in sequence i begins at position j
0 otherwise

Expectation Maximization 
[MEME, Bailey & Elkan, 1995]

Input (as above):	

Sequences s1, s2, ..., sk; motif length l; background 
model; again assume one instance per sequence 
(variants possible)	


Algorithm: EM	

Visible data: the sequences	

Hidden data: where’s the motif 
!
!

Parameters θ: The WMM
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MEME Outline

Typical EM algorithm:	


Parameters θt at tth iteration,  used to estimate 
where the motif instances are (the hidden variables)	


Use those estimates to re-estimate the parameters θ 
to maximize likelihood of observed data, giving θt+1	


Repeat	


Key: given a few good matches to best motif, 
expect to pick more
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Cartoon Example

���58

CATGACTAGCATAATCCGAT!
TATAATTTCCCAGGGATAGCA!
TACAATAGGACCATAGAATGCGC

xATAyz

xATAAz
CATGACTAGCATAATCCGAT!
TATAATTTCCCAGGGATAGCA!
TACAATAGGACCATAGAATGCGC

TAtAAT
    CATGACTAGCATAATCCGAT!
             TATAATTTCCCAGGGATAGCA!
TACAATAGGACCATAGAATGCGC



Ŷi,j = E(Yi,j | si, θt)

= P (Yi,j = 1 | si, θt)

= P (si | Yi,j = 1, θt)P (Yi,j=1|θt)
P (si|θt)

= cP (si | Yi,j = 1, θt)

= c′
∏l

k=1 P (si,j+k−1 | θt)

where c′ is chosen so that
∑

j Ŷi,j = 1.

E = 0 · P (0) + 1 · P (1)

Bayes

Expectation Step 
(where are the motif instances?)

1 3 5 7 9 11 ...

Sequence i

Ŷi,j}∑=1

Recall slide 32
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Q(θ | θt) = EY ∼θt [log P (s, Y | θ)]

= EY ∼θt [log
∏k

i=1 P (si, Yi | θ)]

= EY ∼θt [
∑k

i=1 log P (si, Yi | θ)]

= EY ∼θt [
∑k

i=1

∑|si|−l+1
j=1 Yi,j log P (si, Yi,j = 1 | θ)]

= EY ∼θt [
∑k

i=1

∑|si|−l+1
j=1 Yi,j log(P (si | Yi,j = 1, θ)P (Yi,j = 1 | θ))]

=
∑k

i=1

∑|si|−l+1
j=1 EY ∼θt [Yi,j ] log P (si | Yi,j = 1, θ) + C

=
∑k

i=1

∑|si|−l+1
j=1 Ŷi,j log P (si | Yi,j = 1, θ) + C

Maximization Step 
(what is the motif?)

Find θ maximizing expected log likelihood: 
!

!

!

!

!

!

!

���60
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!

Exercise: Show this is 
maximized by “counting” 
letter frequencies over all 
possible motif instances, 
with counts weighted by           
	
 , again the “obvious” 
thing.

M-Step (cont.)
Q(θ | θt) =

∑k
i=1

∑|si|−l+1
j=1 Ŷi,j log P (si | Yi,j = 1, θ) + C

Ŷi,j

s1 : ACGGATT. . .
. . .

sk : GC. . . TCGGAC

Ŷ1,1 ACGG
Ŷ1,2 CGGA
Ŷ1,3 GGAT

...
...

Ŷk,l−1 CGGA
Ŷk,l GGAC
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Initialization

1. Try every motif-length substring, and use as 
initial θ a WMM with, say, 80% of weight on 
that sequence, rest uniform	


2. Run a few iterations of each	


3. Run best few to convergence	


(Having a supercomputer helps): 	

http://meme.sdsc.edu/

���62



The Gibbs Sampler 
!

Lawrence, et al.  “Detecting Subtle Sequence Signals:  A 
Gibbs Sampling Strategy for Multiple Sequence 

Alignment,” Science 1993

Another Motif 
Discovery Approach
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6      10
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Geman & Geman, IEEE PAMI 1984	


Hastings, Biometrika, 1970	


Metropolis, Rosenbluth, Rosenbluth, Teller & 
Teller, “Equations of State Calculations by Fast 
Computing Machines,” J. Chem. Phys. 1953	


Josiah Williard Gibbs, 1839-1903,  American 
physicist, a pioneer of thermodynamics

Some History
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An old problem: 	

n random variables:	

Joint distribution (p.d.f.): 	

Some function:     	

Want Expected Value:

x1, x2, . . . , xk

P (x1, x2, . . . , xk)

E(f(x1, x2, . . . , xk))
f(x1, x2, . . . , xk)

How to Average
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Approach 1: direct integration  
   (rarely solvable analytically, esp. in high dim)	

Approach 2: numerical integration  
   (often difficult, e.g., unstable, esp. in high dim)	

Approach 3: Monte Carlo integration 
    sample                                   and average:

E(f(x1, x2, . . . , xk)) =∫

x1

∫

x2

· · ·
∫

xk

f(x1, x2, . . . , xk) · P (x1, x2, . . . , xk)dx1dx2 . . . dxk

E(f(x⃗)) ≈ 1
n

∑n
i=1 f(x⃗(i))

x⃗(1), x⃗(2), . . . x⃗(n) ∼ P (x⃗)

How to Average
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• Independent sampling also often hard, but not 
required for expectation	


• MCMC                                 w/ stationary dist = P	

• Simplest & most common: Gibbs Sampling 
!

• Algorithm 
for t = 1 to ∞ 
   for i = 1 to k do : 

P (xi | x1, x2, . . . , xi−1, xi+1, . . . , xk)

xt+1,i ∼ P (xt+1,i | xt+1,1, xt+1,2, . . . , xt+1,i−1, xt,i+1, . . . , xt,k)

t+1    t

X⃗t+1 ∼ P (X⃗t+1 | X⃗t)

Markov Chain Monte 
Carlo (MCMC)
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1 3 5 7 9 11 ...

Sequence i

Ŷi,j
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Input: again assume sequences s1, s2, ..., sk 

with one length w motif per sequence	


Motif model:  WMM	


Parameters:  Where are the motifs? 
for 1 ≤ i ≤ k, have 1 ≤ xi ≤ |si|-w+1	

“Full conditional”:  to calc 
!

build WMM from motifs in all sequences 
except i, then calc prob that motif in ith seq 
occurs at j by usual “scanning” alg.  
!

P (xi = j | x1, x2, . . . , xi−1, xi+1, . . . , xk)
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Randomly initialize xi’s 
for t = 1 to ∞ 
   for i = 1 to k  
      discard motif instance from si;  
      recalc WMM from rest 
      for j = 1 ... |si|-w+1 
         calculate prob that ith motif is at j: 
!

         pick new xi according to that distribution 

Similar to 
MEME, but it 
would 
average over, 
rather than 
sample from

P (xi = j | x1, x2, . . . , xi−1, xi+1, . . . , xk)

Overall Gibbs Alg
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Burnin - how long must we run the chain to 
reach stationarity?	


Mixing - how long a post-burnin sample must 
we take to get a good sample of the 
stationary distribution?  In particular:	


Samples are not independent; may not  
“move” freely through the sample space	

Many isolated modes

Issues
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“Phase Shift” - may settle on suboptimal 
solution that overlaps part of motif. 
Periodically try moving all motif instances a 
few spaces left or right.	


Algorithmic adjustment of pattern width: 
Periodically add/remove flanking positions to 
maximize (roughly) average relative entropy 
per position	


Multiple patterns per string

Variants & Extensions
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ABSTRACT

Motivation: High-throughput ChIP-seq studies typically identify thou-

sands of peaks for a single transcription factor (TF). It is common for

traditional motif discovery tools to predict motifs that are statistically

significant against a naı̈ve background distribution but are of question-

able biological relevance.

Results: We describe a simple yet effective algorithm for discovering

differential motifs between two sequence datasets that is effective in

eliminating systematic biases and scalable to large datasets. Tested

on 207 ENCODE ChIP-seq datasets, our method identifies correct

motifs in 78% of the datasets with known motifs, demonstrating

improvement in both accuracy and efficiency compared with

DREME, another state-of-art discriminative motif discovery tool.

More interestingly, on the remaining more challenging datasets, we

identify common technical or biological factors that compromise the

motif search results and use advanced features of our tool to control

for these factors. We also present case studies demonstrating the

ability of our method to detect single base pair differences in DNA

specificity of two similar TFs. Lastly, we demonstrate discovery of

key TF motifs involved in tissue specification by examination of

high-throughput DNase accessibility data.

Availability: The motifRG package is publically available via the

bioconductor repository.

Contact: yzizhen@fhcrc.org

Supplementary information: Supplementary data are available at

Bioinformatics online.

Received on March 13, 2013; revised on August 13, 2013; accepted

on October 19, 2013

1 INTRODUCTION

The emergence of high-throughput sequencing technology for
genome-wide profiling of transcription factor binding sites
(TFBS) has made precise categorization of their DNA motifs
possible. Harnessing the power of large quantities of data gen-
erated by this technology presents many computational chal-
lenges. Motif discovery is a classical bioinformatics problem
and has been an active area of research for decades. Existing

tools can be roughly classified as profile-based, such as MEME
(Bailey and Elkan, 1995), or pattern-based like CONSENSUS
(Hertz and Stormo, 1999) [see (Tompa et al., 2005) for a review
and performance study of popular motif discovery tools]. Most
of these tools, however, do not easily scale to large datasets.
Users typically limit the motif search to top ranking peaks,
thus sacrifice the power of the data, which may be critical for
accurate modeling of the TFBS and for identification of cofac-
tors. Large amounts of data also increase the power to detect
various non-random signals, many of which may not be directly
related to the problem of interest. The new challenge is to under-
stand the nature of motif signals and determine the relevant ones.
We propose to test the motif enrichment in a foreground dataset
against an explicitly stated background dataset, rather against a
non-informative null distribution. The background dataset
should be carefully selected to represent the systematic biases
present in the foreground.
Discriminative motif discovery is not a new approach.

Pioneering work includes, but is not limited to, DME (Smith
et al., 2006), DIPS (Sinha, 2006) and DEME (Redhead and
Bailey, 2007). These methods find a discriminative position
weight matrix (PWM) to optimize an objective function, which
for the case of DEME and DME, is the likelihood of the data
given the model and sequence class. However, the optimization
procedures of many of these methods are computationally
expensive, making them unsuitable for large datasets. Recent
works designed for high-throughput datasets use more simplified
statistical models. For example, DREME [MEME suite (Bailey,
2011)] and oligo-diff [RSAT suite (Thomas-Chollier et al., 2012)]
use Fisher’s exact test and PeakRegressor (Pessiot et al., 2010)
applies a linear regression model to fit peak scores by motif
counts.
In this study, we propose a new discriminative motif discovery

algorithm motifRG that distinguishes two sequence datasets.
We measure the discriminative power of a motif by a logistic
regression model, which shows some similarity to DREME
and PeakRegressor, but offers a better combination of robust-
ness and flexibility. We also provide an effective and efficient
iterative process for motif refinement and extension and apply
a bootstrap robustness test to avoid over-fitting in the optimiza-
tion process. The logistic regression framework offers direct*To whom correspondence should be addressed.
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measurement of statistical significance, and we demonstrate by
permutation tests that the associated z statistics reflect the prob-
ability of occurrence by chance. This framework also provides
flexibility to handle existing bias between the two datasets, and to
weight the sequences according to their importance, both import-
ant features when dealing with some challenging datasets (see
Section 3 for details). The method is implemented in R (R
Development Core Team, 2010) Bioconductor Core Team, and
is publicly available via the Bioconductor (Gentleman et al.,
2004) repository.
We applied this method in a comprehensive motif study of 207

ENCODE ChIP-seq datasets for TFBS. Under the default set-
ting, motifRG successfully discovered accurate motifs in 78% of
the datasets with known motifs, demonstrating its flexibility
in handling diverse applications. In many cases, biologically
plausible cofactor motifs are also discovered. Compared with
DREME, motifRG had comparable performance at identifying
the core motif, and generally ran about 40% faster. Its advan-
tages over DREME in terms of both accuracy and efficiency are
more obvious for longer motifs and motifs with degenerate
flanking sequences, probably due to a more effective refinement
procedure. By exploring the cases where we fail to detect known
motifs, we identify several common factors likely to compromise
the motif search results and propose strategies that exploit the
flexibility of motifRG to deal with these challenges. Using one
in-depth case study, we demonstrate the power of discriminative
motif analysis for the study of DNA binding specificity of similar
members of one protein family. We also show that this tool can
be applied to DNaseI accessibility datasets to identify TFBS that
are enriched at cell type specific accessible sites, which may act as
key regulators of cell lineage specific chromatin remodeling.
Ourmethod, and discriminativemotif discovery in general, rep-

resents powerful tools to exploit various types of high-throughput
datasets to answer many fundamental biological questions.

2 METHODS

2.1 Logistic regression modeling of motifs
We cast the problem of discriminative motif discovery in the framework
of logistic regression. For a given motif, let x be the motif count in each
sequence. The basic assumption of logistic regression is that sequences
with equal motif counts have equal probabilities P of containing binding
sites, and that the logarithm of the odds ratio is linearly related to the
count:

log
p

1! p
¼ !0 þ !1x

More generally, we fit

log
p

1! p
¼ !0 þ !1xþ !2w

where w represents $1 optional terms reflecting other biases such as GC
content. Model parameters (!i) are estimated by the principle of max-
imum likelihood. The statistical significance of each coefficient !i is esti-

mated by a Wald test, which calculates Z-statistics: Z ¼ ~!i
se, where

~!i is the

maximum likelihood estimate of !i and se the estimated standard error of
!i. The z value is then squared, yielding a Wald statistic with a chi-square
distribution (Hosmer and Lemeshow, 2000; Sinha, 2006). Our motif
search optimization goal is to find a motif representation with maximum
absolute z-value. As motif counts have few unique values, we tabulate the

all values of x and fit the model with only the unique values, weighting
each unique value by its count. For applications in which the sequences
are weighted, the weight for each unique value is the sum of all weights of
the sequences with the given value. This reduced representation speeds up
the logistic regression model significantly for large datasets.

Regression was introduced to motif search by pioneering work of
Bussemaker et al. (2001), which models the correlation of motif occur-
rences and gene expression by linear regression. A similar model was
adopted by PeakRegressor for applications for ChIP-Seq datasets,
which uses peak scores as response. A potential pitfall of this model is
sensitivity to outliers. PeakRegressor tried to avoid the problem of out-
liers by using different regularization techniques such as L1-norm, ridge
regression and so forth, which involve additional parameterization.
Recent study suggests that other factors such as chromatin accessibility
(John et al., 2011; Neph et al., 2012) are likely to have greater effect on
intensities of ChIP-Seq signal than motif counts. We believe logistic
regression is an appropriate choice for this application because it offers
a good combination of flexibility and robustness.

2.2 Search strategy

We start by enumerating all nmers with a given width n, fitting the above
regression model and sorting the nmers by the absolute z-value. The most
significant nmer is chosen as the seed motif. To address the concern that
candidates with small enrichment can be highly statistical significant in
large datasets, we set an enrichment ratio threshold for the seed motif to
ensure that the enrichment is biologically meaningful. We further refine
the seed motif by extension and small perturbations by testing all variants
with Hamming distance of one over the full IUPAC nucleotide alphabet.
The general flow chart of this method is shown in Figure 1.

To extend the seed, we append a given number f of Ns at both sides of
the motif and enumerate all replacements of one N letter by a more
specific letter in the IUPAC alphabet. We choose the one with maximum
absolute z-value, which becomes the new motif if it improves the z-value,
and repeat this process. If no further improvement can be made at the
current motif length, append additional Ns to both ends so that each side
still has f Ns. If no replacement of Ns yields a better motif, terminate
and trim all flanking Ns. This process is illustrated in Supplementary
Figure S1B.

Next, we try to refine the motif by small perturbations. We enumerate
all candidates with Hamming distance of one that are compatible with the
seed and not previously tested. We then choose the candidate with the
most improved z-value as the new motif. Repeat this process until no
improvement can be made. This process is illustrated in Supplementary
Figure S1C.

If there are any changes made to the seed at extension or permutation
steps, the whole refinement process is repeated. Conceptually, we can
examine all extension and perturbation candidates at the same time.
We find that separating the two steps yields better performance and

Fig. 1. motifRG method outline (see also Supplementary Fig. S1)
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cuts down memory usage by decreasing the search space. We perform the
extension step first, as we think it is more important to determine the full-
length signature of the motif. In the extension step, the maximum number
of candidates tested is 2fM where f is the number of flanking Ns on each
side, and M the size of IUPAC alphabet. In the perturbation step, the
maximum number is lM, where l is the length of the pattern. The per-
turbed patterns must be compatible with the initial seed motif, and we
filter the candidates by requiring either an increase of total foreground
counts or a decrease of total background counts, so the number of
allowed candidates is a lot smaller. Using this strategy we can afford to
extend the motif as long as needed.

The refinement step can be subject to over-fitting, as a small z-value
improvement may not be meaningful. To improve robustness, we per-
form the following bootstrap test to determine the significance of the im-
provement: randomly sample the whole sequence dataset (including
positive and negative sequences) with replacement for a few times (default
5 times), calculate the z-values for the new and the original motif for
each sampling and compute the P-value by applying t-tests on two sets
of z-values. Accept the new motif if the P-value is under a given thresh-
old. Although the number of bootstraps we performed is small, we found
the variance estimate is reasonably accurate and informative to guide
refinement to be more aggressive or conservative (see Section 3 for
details).

Candidate enumeration, evaluation and bootstrap validation can be
performed in parallel in each iteration, and parallelization is implemented
by the ‘parallel’ package of Bioconductor. After refining the top motif, we
mask all of its occurrences and repeat the process to find the next motif.

3 RESULTS

3.1 motifRG accurately predicted annotated motifs

To assess the performance of our method for de novo motif dis-
covery in a real world application under different conditions, we
tested it on 207 ENCODE ChIP-seq datasets collected from two
groups, HAIB_TFBS by HudsonAlpha and SYDH_TFBS by
Yale and UCD (see Supplementary Table S1 for the complete
list). This dataset covers 82 unique TFs and 25 cell types with
different characteristics: the number of peaks varies from a few
hundreds to hundreds of thousands, the average GC content
ranges from 0.40 to 0.66 and median peak width varies from
100 to 1000 nucleotides (Supplementary Fig. S2). We made a
number of decisions to standardize/simplify the analysis and be-
lieve they have no real effect on the outcome. If the number of
peaks exceeded 50K, we randomly sampled 50K peaks. This
approach was further justified by the analysis presented below
in section ‘Motif significance and sample size’, which examines
the effect of number of peaks on motif prediction. For each peak
in each dataset, we first chose one corresponding background
sequence from the flanking regions, randomly chosen from
either side 0–200 nt from the edge of the peak, and with the
same width as the peak. We then predicted up to five enriched
motifs. Our software also identifies depleted motifs, but they
were ignored here. To find the annotated motif of the ChIP-ed
TF, we matched TF names/aliases with the motif names in the
motif databases Jaspar (Bryne et al., 2008; Redhead and Bailey,
2007) and Uniprobe (Newburger and Bulyk, 2009). If no exact
matches were found, we used the motif of a homolog; e.g. we
annotated Atf3 using the Atf1 motif. We then compared the
PWMs derived from the top five predicted motifs against the
motif database using Tomtom (Tanaka et al., 2011) with default

settings. We claimed success in finding the annotated motif if it
was among the Tomtom reported matches. We compared our
results to DREME, which was run on the same sets of fore-
ground and background sequences under the default setting
with maximum of five output motifs.
Among 148 ENCODE datasets with annotated motifs for the

TF, motifRG identifies a match to the annotated motif in 115
and does not identify a match in 33. By this criterion, we suc-
ceeded in finding the right motifs in 78% of datasets. In com-
parison, DREME found annotated motif in 116 datasets, almost
the same set as ours.
We hypothesized that the annotated motifs are not enriched

significantly in the datasets where motifRG and/or DREME
failed. To test this hypothesis, we scanned for the best PWM
match of the annotated motif in each sequence in both the fore-
ground and the corresponding background datasets, and com-
puted AUC (the area under the receiver operating characteristic
curve) (Brown, 2006) by varying the PWM threshold to discrim-
inate foreground from background. The datasets for which we
failed to find the motifs generally have low AUC, which suggest
low enrichment of the annotated motif relative to the control
(Fig. 2A). Therefore, we believe that failure to discover the
annotated motifs was likely due to the lack of the TF motif
enrichment in the datasets, rather than to the failure of the al-
gorithms. We plot the P-values inferred by Tomtom for motifs
predicted by motifRG and DREME against each other in
Figure 2B. The two methods predict similar motifs most of the

Fig. 2. Performance evaluation of motifRG and DREME. (A) AUC
scores for datasets with known motifs. The ROC curve is calculated
using the best PWM scores of each sequence based on the annotated
motif and measuring the discrimination between foreground and back-
ground as the PWM score threshold is varied. The datasets in which both
motifRG and DREME found motifs matching to the database are
marked by circle, DREME only by plus, motifRG only by triangle
and neither by cross. (B) Accuracy for matches of predicted motifs to
annotated motifs based on P-values inferred by Tomtom in–log10 trans-
formation. Datasets corresponding to the same TF are marked by the
same colors and symbols. The TFs of datasets in which motifRG and
DREME performed significantly differently are shown. (C) Comparison
of running time (in seconds) for motifRG and DREME
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flanking preference of CAGCTG E-box of these factors
(Fig. 4 B3).

3.3 Application to cell type specific accessible sites

Discriminative motif analysis can be applied to any high-
throughput sequence datasets besides ChIP-Seq data. We used
this method to identify key TFs that are involved in regulation of
cell type-specific chromatin remodeling using DNaseI hypersen-
sitivity data. We collected 211 DNaseI hypersensitivity datasets
from the ENCODE Web site. Combining highly similar ones
yielded 77 profiles. We defined cell type-specific accessible sites

as the sites that are shared by !5 profiles. To predict motifs in
each set of cell type specific sites, we chose background as the
random sampling of the cell type-specific sites in all cell types
that do not overlap with the foreground. The predicted motifs
for a set of well-studied cell types are shown in Figure 5 (full
results in Supplementary Table S4). We found many key TFs
that are known to regulate the given cell type. For example, we
found motifs for Oct4 (annotated as Pou2f2), Sox2 and GC-rich
motifs that mimic KLF4 (annotated as MZF1 and ASCL2) in
Nt2d1, an embryonic cell line. All these factors are well known to
be markers of cell pluripotency. We found motifs for IRF1 in B
cells, a key factor for immune response. In various lymphocyte
cells, we found motifs for E2A (annotated as TCFE2A), Runx
and ETS family TFs (annotated as SPIB, ELF5, SFPI1), all of
which are critical immune system regulators. For various differ-
ential epithelial cells in kidney, colon, lung, breast, pancrease and
prostate, FOX family motifs are dominant and motifs for HNF
family are enriched in kidney and colon. Similarly, we found
significant enrichment of various Homeobox, NeuroD and
Zic2 motifs in nervous system and MyoD motifs in skeletal
muscle. A recent ENCODE study (Neph et al., 2012) used
motifs in curated databases or de novo predicted motifs to scan
accessible regions and compute enrichment in the given cell type.
We offer a more direct alternative by combining motif prediction
and discriminative analysis. The predicted motifs are conse-
quently optimized to highlight the distinction between fore-
ground and background, thus likely to be more informative in
this setting.

3.4 Motif significance and sample size

We have shown that our method can discover biologically rele-
vant motifs in a wide range of biological samples and application
settings. Here, we also give evidence that the z-value calculated
by our software is a true indication of a motif’s statistical signifi-
cance, and that the method is robust to variation in sample size
and motif enrichment level. To quantify motif significance, we
use the z-value statistic from the logistic regression model as the
‘motif score.’ To test its validity, we performed the following
experiment on the MyoD ChIP-seq dataset: we randomly
sampled 1–64K sequences from the combined foreground and
background datasets and then randomly permuted the class
labels within each sample. We repeated the permutation
5 times. The z-values for all enumerated 6mers in each permuta-
tion are approximately normally distributed, as shown by quan-
tile–quantile plots (Supplementary Fig. S5A), indicating an
accurate reflection of true statistical significance.
To determine how the z-scores of enriched motifs change with

sample size, we plotted the distribution of z-values for all 6mers
using samples from 1 to 64K, and highlight CAGCTG, which is
identified as the most significant 6mer using all the data.
CAGCTG is consistently the most significant motif for each
sample size (Fig. 6A), and the motif score is linear with the
square root of the sample size (Supplementary Fig. S5B), in
accord with the central limit theorem. We also tested how the
motif scores correlate with motif enrichment level. For each sam-
pling with size from 1 to 64K, we randomly kept 20, 40 to 100%
of the original foreground samples and replaced the remaining
foreground sequences with background sequences while keeping

Fig. 4. Predicting the specificity of similar bHLH TFs. (A1) Predicted
PWMs for MyoD (left) and NeuroD2 (right), (A2) Discriminative motifs
based on direct comparison of MyoD sites (foreground) with NeuroD2
sites (background), suggesting MyoD and NeuroD2 preferred ebox and
cofactor motifs. (B1 and B2) Comparison of MyoD and MSC. Similar to
A1 and A2. (B3) Gel shift demonstrating that MSC/E12 heterodimer
binds strongly at CCAGCTGG and MyoD/E12 binds weakly, whereas
GCAGCTGC binds strongly to both MyoD/E12 and MSC/E12. MSC
homodimer also binds stronger at CCAGCTGG than GCAGCTGC
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flanking preference of CAGCTG E-box of these factors
(Fig. 4 B3).

3.3 Application to cell type specific accessible sites

Discriminative motif analysis can be applied to any high-
throughput sequence datasets besides ChIP-Seq data. We used
this method to identify key TFs that are involved in regulation of
cell type-specific chromatin remodeling using DNaseI hypersen-
sitivity data. We collected 211 DNaseI hypersensitivity datasets
from the ENCODE Web site. Combining highly similar ones
yielded 77 profiles. We defined cell type-specific accessible sites

as the sites that are shared by !5 profiles. To predict motifs in
each set of cell type specific sites, we chose background as the
random sampling of the cell type-specific sites in all cell types
that do not overlap with the foreground. The predicted motifs
for a set of well-studied cell types are shown in Figure 5 (full
results in Supplementary Table S4). We found many key TFs
that are known to regulate the given cell type. For example, we
found motifs for Oct4 (annotated as Pou2f2), Sox2 and GC-rich
motifs that mimic KLF4 (annotated as MZF1 and ASCL2) in
Nt2d1, an embryonic cell line. All these factors are well known to
be markers of cell pluripotency. We found motifs for IRF1 in B
cells, a key factor for immune response. In various lymphocyte
cells, we found motifs for E2A (annotated as TCFE2A), Runx
and ETS family TFs (annotated as SPIB, ELF5, SFPI1), all of
which are critical immune system regulators. For various differ-
ential epithelial cells in kidney, colon, lung, breast, pancrease and
prostate, FOX family motifs are dominant and motifs for HNF
family are enriched in kidney and colon. Similarly, we found
significant enrichment of various Homeobox, NeuroD and
Zic2 motifs in nervous system and MyoD motifs in skeletal
muscle. A recent ENCODE study (Neph et al., 2012) used
motifs in curated databases or de novo predicted motifs to scan
accessible regions and compute enrichment in the given cell type.
We offer a more direct alternative by combining motif prediction
and discriminative analysis. The predicted motifs are conse-
quently optimized to highlight the distinction between fore-
ground and background, thus likely to be more informative in
this setting.

3.4 Motif significance and sample size

We have shown that our method can discover biologically rele-
vant motifs in a wide range of biological samples and application
settings. Here, we also give evidence that the z-value calculated
by our software is a true indication of a motif’s statistical signifi-
cance, and that the method is robust to variation in sample size
and motif enrichment level. To quantify motif significance, we
use the z-value statistic from the logistic regression model as the
‘motif score.’ To test its validity, we performed the following
experiment on the MyoD ChIP-seq dataset: we randomly
sampled 1–64K sequences from the combined foreground and
background datasets and then randomly permuted the class
labels within each sample. We repeated the permutation
5 times. The z-values for all enumerated 6mers in each permuta-
tion are approximately normally distributed, as shown by quan-
tile–quantile plots (Supplementary Fig. S5A), indicating an
accurate reflection of true statistical significance.
To determine how the z-scores of enriched motifs change with

sample size, we plotted the distribution of z-values for all 6mers
using samples from 1 to 64K, and highlight CAGCTG, which is
identified as the most significant 6mer using all the data.
CAGCTG is consistently the most significant motif for each
sample size (Fig. 6A), and the motif score is linear with the
square root of the sample size (Supplementary Fig. S5B), in
accord with the central limit theorem. We also tested how the
motif scores correlate with motif enrichment level. For each sam-
pling with size from 1 to 64K, we randomly kept 20, 40 to 100%
of the original foreground samples and replaced the remaining
foreground sequences with background sequences while keeping

Fig. 4. Predicting the specificity of similar bHLH TFs. (A1) Predicted
PWMs for MyoD (left) and NeuroD2 (right), (A2) Discriminative motifs
based on direct comparison of MyoD sites (foreground) with NeuroD2
sites (background), suggesting MyoD and NeuroD2 preferred ebox and
cofactor motifs. (B1 and B2) Comparison of MyoD and MSC. Similar to
A1 and A2. (B3) Gel shift demonstrating that MSC/E12 heterodimer
binds strongly at CCAGCTGG and MyoD/E12 binds weakly, whereas
GCAGCTGC binds strongly to both MyoD/E12 and MSC/E12. MSC
homodimer also binds stronger at CCAGCTGG than GCAGCTGC
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flanking preference of CAGCTG E-box of these factors
(Fig. 4 B3).

3.3 Application to cell type specific accessible sites

Discriminative motif analysis can be applied to any high-
throughput sequence datasets besides ChIP-Seq data. We used
this method to identify key TFs that are involved in regulation of
cell type-specific chromatin remodeling using DNaseI hypersen-
sitivity data. We collected 211 DNaseI hypersensitivity datasets
from the ENCODE Web site. Combining highly similar ones
yielded 77 profiles. We defined cell type-specific accessible sites

as the sites that are shared by !5 profiles. To predict motifs in
each set of cell type specific sites, we chose background as the
random sampling of the cell type-specific sites in all cell types
that do not overlap with the foreground. The predicted motifs
for a set of well-studied cell types are shown in Figure 5 (full
results in Supplementary Table S4). We found many key TFs
that are known to regulate the given cell type. For example, we
found motifs for Oct4 (annotated as Pou2f2), Sox2 and GC-rich
motifs that mimic KLF4 (annotated as MZF1 and ASCL2) in
Nt2d1, an embryonic cell line. All these factors are well known to
be markers of cell pluripotency. We found motifs for IRF1 in B
cells, a key factor for immune response. In various lymphocyte
cells, we found motifs for E2A (annotated as TCFE2A), Runx
and ETS family TFs (annotated as SPIB, ELF5, SFPI1), all of
which are critical immune system regulators. For various differ-
ential epithelial cells in kidney, colon, lung, breast, pancrease and
prostate, FOX family motifs are dominant and motifs for HNF
family are enriched in kidney and colon. Similarly, we found
significant enrichment of various Homeobox, NeuroD and
Zic2 motifs in nervous system and MyoD motifs in skeletal
muscle. A recent ENCODE study (Neph et al., 2012) used
motifs in curated databases or de novo predicted motifs to scan
accessible regions and compute enrichment in the given cell type.
We offer a more direct alternative by combining motif prediction
and discriminative analysis. The predicted motifs are conse-
quently optimized to highlight the distinction between fore-
ground and background, thus likely to be more informative in
this setting.

3.4 Motif significance and sample size

We have shown that our method can discover biologically rele-
vant motifs in a wide range of biological samples and application
settings. Here, we also give evidence that the z-value calculated
by our software is a true indication of a motif’s statistical signifi-
cance, and that the method is robust to variation in sample size
and motif enrichment level. To quantify motif significance, we
use the z-value statistic from the logistic regression model as the
‘motif score.’ To test its validity, we performed the following
experiment on the MyoD ChIP-seq dataset: we randomly
sampled 1–64K sequences from the combined foreground and
background datasets and then randomly permuted the class
labels within each sample. We repeated the permutation
5 times. The z-values for all enumerated 6mers in each permuta-
tion are approximately normally distributed, as shown by quan-
tile–quantile plots (Supplementary Fig. S5A), indicating an
accurate reflection of true statistical significance.
To determine how the z-scores of enriched motifs change with

sample size, we plotted the distribution of z-values for all 6mers
using samples from 1 to 64K, and highlight CAGCTG, which is
identified as the most significant 6mer using all the data.
CAGCTG is consistently the most significant motif for each
sample size (Fig. 6A), and the motif score is linear with the
square root of the sample size (Supplementary Fig. S5B), in
accord with the central limit theorem. We also tested how the
motif scores correlate with motif enrichment level. For each sam-
pling with size from 1 to 64K, we randomly kept 20, 40 to 100%
of the original foreground samples and replaced the remaining
foreground sequences with background sequences while keeping
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GCAGCTGC binds strongly to both MyoD/E12 and MSC/E12. MSC
homodimer also binds stronger at CCAGCTGG than GCAGCTGC

6

Z.Yao et al.



���86

wide peaks, but keeping peaks with reasonable width is import-
ant for prediction of degenerate motifs.
Finally, we want to address the issue whether bootstrapping in

our refinement step usefully combats over-fitting. We used the
CAGCTG example shown earlier in text and tested all extension
variants at position !1 using different numbers of bootstrap
replicates, sample sizes and motif enrichment levels. We com-
puted the standard deviation of scores for each variant based
on bootstraps. The distribution of standard deviation does not
change significantly with number of bootstraps performed or
with the sample size (Supplementary Fig. S5D and E), but

correlate strongly with the motif enrichment level (Fig. 6D).
When enrichment level is low, the scores of better candidates
(based on datasets with the biggest sample size and highest en-
richment level) tend to be within confidence interval of worse
candidates (Fig. 6E), in which case, based on t-test results, we
terminate the refinement process early. Therefore, the bootstrap-
ping technique guides motif refinement to be more aggressive
when motif signal is strong, but conservative when motif signal
is low, effectively avoiding over-fitting at reasonable cost.

4 DISCUSSION

The main challenge of traditional motif discovery is to increase
signal to noise ratio due to lack of power from small input
datasets. High-throughput datasets present different challenges:
besides scalability concerns, they are likely to produce large num-
bers of statistically significant motifs due to the power of the
large sample size, many of which are hard to interpret. To ef-
fectively use the motif prediction results to guide further study, it
is important to understand the nature of these motifs and why
they are enriched. It is well understood that genomes are far from
random, which presents complicated higher order structure such
as dinucleotide sequence preference, repetitive sequences, nucleo-
some positioning signals and so forth. Genomic sequences in
promoters, which usually show enrichment of TFBS, also con-
tain different characteristics from other parts of genome such as
enrichment of CpG islands, common motifs for housekeeping
TFs and so forth. These factors can all cause certain sequence
patterns to be enriched in a given dataset. In addition, many
ChIP-Seq and DNaseI hypersensitivity studies suggest that TFs
tend to colocalize on a common set of accessible regions. It is
unclear if these TFs collectively determine the accessibility of the
given sites or some bind non-specifically at the accessible sites.
Discriminative motif analysis is a powerful tool to address
whether the predicted motifs are truly involved in the biological
problem under study by use of a rigorous control group, a meth-
odology frequently used in experimental design. The key to suc-
cess for this method is proper choice of background, which might
not be clear until we have a better understanding of factors that
affects binding of TFs. By examination of a large set of ChIP-Seq
profiles, we identified some common motifs for TFs in a certain
category. For example, TFs that bind predominantly in pro-
moter regions are likely to be associated with ETS, SP1 and
other GC-rich motifs, and TFs with most of sites in distal regions
tend to have enrichment of AP1 sites. To determine if the asso-
ciated motifs are truly specific to the given TFs, we can iteratively
test for potential biases as we find them, each time making the
background as similar to the foreground as possible except for
the defined difference under study. As accessible regions in the
given cell type can be viewed as the union of all TFBS that are
associated with active chromatin in that cell type, they present
some generic features common to most TFBS and can serve as a
good background for comparison with adjustment to other bias.
Further, downstream analysis can be used to validate predicted
motifs. For example, direct TFBS should contain a clear DNaseI
digital footprinting signature (Neph et al., 2012) and be close to
the centers of ChIP-Seq peaks (Bailey and Machanick, 2012).
We noticed that stronger peaks tend to be associated with

stronger motifs, as measured by the PWM scores, particularly

Fig. 6. Motif significance with respect to sample size and enrichment.
(A) Score distribution of for all 6mers. CAGCTG ebox, marked by
‘þ’, is the most significant 6mer for all sample sizes. X-axis: dataset
sample size. Y-axis: motif scores. (B). Correlation between motif scores
(Y-axis) against true foreground proportion (X-axis). Curves with differ-
ent symbols correspond to different sample sizes. (C) Distribution of all
6mers with varying sample size and proportion of true foreground;
CAGCTG is highlighted by ‘þ’. X-axis: the proportion of true fore-
ground in shuffled foreground, Y-axis: motif scores. Panels correspond
to different sample sizes. (D) The standard deviation of motif scores for
all CAGCTG !1 extensions based on bootstraps decreases with the pro-
portion of true foreground. Y-axis: the standard deviation. X-axis: the
proportion of true foreground. (E) When motif enrichment is low, motif
scores are more variable. X-axis: all !1 extensions of CAGCTG. Y-axis:
motif scores. The 95% confidence intervals are plotted based on boot-
strapping mean and variance. Upper panel: 160 bootstrap iterations, total
sample size 32 000 and 100% of true foreground; lower panel: using 5
bootstrap iterations, total sample size 500 and only 20% of true
foreground
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13 tools	


Real ‘motifs’ (Transfac)	


56 data sets (human, mouse, fly, yeast)	


‘Real’, ‘generic’, ‘Markov’	


Expert users, top prediction only	


“Blind” – sort of

Methodology
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*     *     $    *     ^     ^     ^         *                    *
$ Greed	

* Gibbs	

^ EM
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Lessons
Evaluation is hard (esp. when “truth” is unknown)	


Accuracy low	


partly reflects limitations in evaluation 
methodology (e.g. ≤ 1 prediction per data set; 
results better in synth data)	


partly reflects difficult task, limited knowledge (e.g. 
yeast > others)	


No clear winner re methods or models
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Motif Discovery 
Summary

Important problem: a key to understanding gene regulation	


Hard problem: short, degenerate signals amidst much noise	


Many variants have been tried, for representation, search, 
and discovery.  We looked at only a few:	


Weight matrix models for representation & search	


Greedy, MEME and Gibbs for discovery	


Still much room for improvement.  Comparative genomics, i.e. 
cross-species comparison is very promising
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