CSE 427 Computational Biology

http://courses.cs.washington.edu/courses/cse427

Larry Ruzzo
Winter 2014

UW CSE Computational Biology Group

He who asks is a fool for five minutes, but he who does not ask remains a fool forever.

-- Chinese Proverb

Today

Admin

Why Comp Bio?

The world's shortest Intro. to Mol. Bio.

Admin Stuff

Course Mechanics \& Grading

Web:
http://courses.cs.washington.edu/courses/cse427
Reading
In class discussion
Homeworks
paper exercises \& programming
No exams, but possible oversized last homework in lieu of final

Background \& Motivation

Moore's Law

Feature Size

nm

Growth of GenBank (Base Pairs)

Source: http://www.ncbi.nlm.nih.gov/Genbank/genbankstats.html

Cost per Genome

Modern DNA Sequencing

A table-top box the size of your oven (but costs a bit more ... ;-) can generate
~100 billion BP of
DNA seq/day; i.e.
= 2008 genbank,
$=30 x$ your genome

The Human Genome Project

1 gagcccggcc
61 gggcgcagcg
121 gcggctcggc
181 tttagcgtcc
241 aaccagagcc
301 caatgtctgt
361 cggaaatcag
421 gccaaatatg
481 acaacactgc
541 ccagaaagga
601 tggaggaagg
661 gtgtgaaaga
721 gggacaactc
781 ctggggccac
841 tccaaatatc
901 ctgtcaggga 961 acacaaactt aatgaagtgt 1021 ...
cgggggacgg gcggccgcag atcatgcgtc tacacgagcc agtcgggcca ggatcacgtt tgtattgtcc tgcacttgcc aatattcgct tacataggga tgtgtggccc gattacagga agcgggattg ccctgtgaga cgcacgggag ggaaattgca aatgaagtgt cacaaaaatg tga gcggcgggat agcgggaccc accgagcccc $9 g g c g c g g c a ~ a g$ gagggcgtct atggggcgga agagaagagg ataatgctta ccatttgccg catctggtca gtatgaatgg ctcactgtgg caaatcgatg caggcccatg tctgcacaaa tgtgtcctgc cttgtcaaga ttaatactgt
cggcgcggcg gtgcgcttca agaggcggcg tgtggatgaa tgggtctttt gagtgcaaat gatgaatgca gcaccattcc

Goals

Basic biology
Disease diagnosis/prognosis/treatment
Drug discovery, validation \& development
Individualized medicine

"High-Throughput BioTech"

Sensors

DNA sequencing
Microarrays/Gene expression
Mass Spectrometry/Proteomics

Protein/protein \& DNA/protein interaction
Controls
Cloning
Gene knock out/knock in RNAi

Floods of data

What's all the fuss?

The human genome is "finished"...
Even if it were, that's only the beginning
Explosive growth in biological data is revolutionizing biology \& medicine

"All pre-genomic lab techniques are obsolete"
(and computation and mathematics are crucial to post-genomic analysis)

CS Points of Contact \& Opportunities

Scientific visualization
Gene expression patterns
Databases
Integration of disparate, overlapping data sources
Distributed genome annotation in face of shifting underlying genomic coordinates, individual variation, ...
AI/NLP/Text Mining
Information extraction from text with inconsistent nomenclature, indirect interactions, incomplete/inaccurate models, ...
Machine learning
System level synthesis of cell behavior from low-level heterogeneous data (DNA seq, gene expression, protein interaction, mass spec,...)

Algorithms

Computers in biology: Then \& now

Microtile

ACGGGTAA

AC GGTAA

Sequence alignment by word processor

D. Ross Boswell

Road, Cambsidge (R2 2Q1., IJK

UCSC Genome Browser on Human Feb. 2009 (GRCh37/hg19) Assembly
 chr11:17,741,110-17,743,6782,569 bp. enter position, gene symbol or search terms go

An Algorithm Example: ncRNAs

The "Central Dogma":
DNA -> messenger RNA -> Protein
Last ~ 5 years:
100s - 1000s of examples of functionally important ncRNAs
Much harder to find than protein-coding genes
Main method - Covariance Models
₹ stochastic context free grammars
Main problem - Sloooow
$\mathrm{O}\left(\mathrm{nm}^{4}\right)$

"Rigorous Filtering" - Z. Weinberg

Convert CM to HMM
(AKA: stochastic CFG to stochastic regular grammar)
Do it so HMM score always \geq CM score
Optimize for most aggressivitstering sint constraint that
score bound maintaineta
A large convex optim Lation
Filter genome sequence wan (slow) CM only on anything
 (uses automata theory, optimization stuff,...)

Results

Typically 200-fold speedup or more Finding dozens to hundreds of new ncRNA genes in many families
The computational advance has enabled new biological discoveries

> Newer, more elaborate techniques pulling in key secondary structure features for better searching (uses automata theory, dynamic programming, Dijkstra, more optimization stuff,...)

More Admin

Course Focus \& Goals

Mainly sequence analysis
Algorithms for alignment, search, \& discovery
Specific sequences, general types ("genes", etc.)
Single sequence and comparative analysis
Techniques: HMMs, EM, MLE, Gibbs, Viterbi...
Enough bio to motivate these problems
including very light intro to modern biotech supporting them
Math/stats/cs underpinnings thereof
Applied to real data

A VERY Quick Intro To Molecular Biology

The Genome

The hereditary info present in every cell
DNA molecule -- a long sequence of nucleotides (A, C, T, G)
Human genome -- about 3×10^{9} nucleotides
The genome project -- extract \& interpret genomic information, apply to genetics of disease, better understand evolution, ...

The Double Helix

As shown, the two strands coil
about each other in a fashion such that all the bases project inward toward the helix axis. The two strands are held together by hydrogen bonds (pink rods) linking each base projecting from one backbone to its so-called complementary base projecting from the other backbone. The base A always bonds to T (A and T are comple-

Shown in (b)
is an uncoiled fragment of (a three complementary base pai chemist's viewpoint, each stra a polymer made up of four re called deoxyribonucleotides Los Alamos Science ${ }^{-}$

$D N A$

Discovered 1869
Role as carrier of genetic information - much later
4 "bases":
adenine (A), cytosine (C), guanine (G), thymine (T)
The Double Helix - Watson \& Crick (\& Franklin) 1953
Complementarity

$$
\mathrm{A} \longleftrightarrow \mathrm{~T} \quad \mathrm{C} \longleftrightarrow \mathrm{G}
$$

Visualization:
http://www.rcsb.org/pdb/explore.do?structureld=123D

Genetics - the study of heredity

A gene -- classically, an abstract heritable attribute existing in variant forms (alleles)

ABO blood type-1 gene, 3 alleles
Mendel
Each individual two copies of each gene
Each parent contributes one (randomly)
Independent assortment (approx, but useful)
Genotype vs phenotype
l.e., genes vs their outward manifestation

AA or AO genotype \rightarrow "type A" phenotype

Cells

Chemicals inside a sac - a fatty layer called the plasma membrane
Prokaryotes (bacteria, archaea) - little recognizable substructure
Eukaryotes (all multicellular organisms, and many single celled ones, like yeast) - genetic material in nucleus, other organelles for other specialized functions

Chromosomes

1 pair of (complementary) DNA molecules (+ protein wrapper)

Most prokaryotes: just 1 chromosome

most

Eukaryotes - an cells have same number of chromosomes, e.g. fruit flies 8 , humans \& bats 46 , rhinoceros $84, \ldots$

Mitosis/Meiosis

Most "higher" eukaryotes are diploid - have homologous pairs of chromosomes, one maternal, other paternal (exception: sex chromosomes)
Mitosis - cell division, duplicate each chromosome, 1 copy to each daughter cell
Meiosis - 2 divisions form 4 haploid gametes (egg/sperm)

Recombination/crossover -- exchange maternal/ paternal segments

Proteins

Chain of amino acids, of 20 kinds
Proteins: the major functional elements in cells
Structural/mechanical
Enzymes (catalyze chemical reactions)
Receptors (for hormones, other signaling molecules, odorants,...)
Transcription factors
3-D Structure is crucial: the protein folding problem

The "Central Dogma"

Genes encode proteins
DNA transcribed into messenger RNA mRNA translated into proteins
Triplet code (codons)

Transcription: DNA \rightarrow RNA

Codons \& The Genetic Code

		Second Base					
		U	C	A	G		
	U	Phe	Ser	Tyr	Cys	U	¢\%¢
		Phe	Ser	Tyr	Cys	C	
		Leu	Ser	Stop	Stop	A	
		Leu	Ser	Stop	Trp	G	
	C	Leu	Pro	His	Arg	U	
		Leu	Pro	His	Arg	C	
		Leu	Pro	Gln	Arg	A	
		Leu	Pro	Gln	Arg	G	
		Ile	Thr	Asn	Ser	U	은
	A	Ile	Thr	Asn	Ser	C	ع
		Ile	Thr	Lys	Arg	A	
		Met/Start	Thr	Lys	Arg	G	
	G	Val	Ala	Asp	Gly	U	
		Val	Ala	Asp	Gly	C	
		Val	Ala	Glu	Gly	A	
		Val	Ala	Glu	Gly	G	

Ala : Alanine
Arg : Arginine
Asn : Asparagine
Asp : Aspartic acid
Cys : Cysteine
Gln : Glutamine
Glu : Glutamic acid
Gly : Glycine
His : Histidine
Ile : Isoleucine
Leu : Leucine
Lys : Lysine
Met : Methionine
Phe : Phenylalanine
Pro : Proline
Ser : Serine
Thr : Threonine
Trp : Tryptophane
Tyr : Tyrosine
Val : Valine

Translation: mRNA \rightarrow Protein

Ribosomes

Watson, Gilman, Witkowski, \& Zoller, 1992

Gene Structure

mRNA built 5 ' to 3 '

Promoter region and transcription factor binding sites (usually) precede 5 ' end
Transcribed region includes 5' and 3' untranslated regions
In eukaryotes, most genes also include introns, spliced out before export from nucleus, hence before translation

Genome Sizes

	Base Pairs	Genes
Mycoplasma genitalium	580,073	483
Pandora Virus	$2,900,000$	2,500
E. coli	$4,639,221$	4,290
Saccharomyces cerevisiae	$12,495,682$	5,726
Caenorhabditis elegans	$95,500,000$	19,820
Arabidopsis thaliana	$115,409,949$	25,498
Drosophila melanogaster	$122,653,977$	13,472
Humans	3.3×10^{9}	$\sim 25,000$
Amoeba dubia	$\sim 200 \times$ human	

http://www.genomesize.com/statistics.php

Genome Surprises

Humans have $<1 / 3$ as many genes as expected
But perhaps more proteins than expected, due to alternative splicing, alt start, alt end

Protein-wise, all mammals are just about the same
But more individual variation than expected
And many more non-coding RNAs -- more than protein-coding genes, by some estimates

Many other non-coding regions are highly conserved, e.g., across all vertebrates

Subset of DNA being transcribed is >> 2\% coding
Complex, subtle "epigenetic" information

... and much more ...

Read one of the many intro surveys or books for much more info.

Bio Concept Summary

cells
DNA
base pairing
genome
replication, transcription, translation

