CSE 427 Computational Biology

Gene Prediction

A statistical interlude: Fair or biased?

ннннтннттн

More likely fair or biased?

More likely H0 or H1? ннннтннттн

- H0: .5 .5
- H1: .9 .1

Quantify likelihood: H₀ vs H₁ HHHHTHHTTH H0: .5 – .5 .5^10 H1: .9 – .1 .9^7 * .1^3

Likelihood ratio: $(.5^{10})/(.9^{7} * .1^{3}) = .4898$ (I.e., odds favor "biased" by about 2:1)

Gene Finding: Motivation

Sequence data flooding into Genbank What does it mean?

> protein genes, RNA genes, mitochondria, chloroplast, regulation, replication, structure, repeats, transposons, unknown stuff, ...

Protein Coding Nuclear DNA

Focus of this lecture

Goal: Automated annotation of new sequence data

State of the Art:

In Eukaryotes:

predictions ~ 60% similar to real proteins

~80% if database similarity used

Prokaryotes

better, but still imperfect

lab verification still needed, still expensive

Biological Basics

Central Dogma:

DNA transcription RNA translation Protein

Codons: 3 bases code one amino acid

Start codon

Stop codons

3', 5' Untranslated Regions (UTR's)

Codons & The Genetic Code

		Second Base					
		U	С	Α	G		
First Base	U	Phe	Ser	Tyr	Cys	U	
		Phe	Ser	Tyr	Cys	С	
		Leu	Ser	Stop	Stop	Α	
		Leu	Ser	Stop	Trp	G	
	с	Leu	Pro	His	Arg	U	
		Leu	Pro	His	Arg	С	
		Leu	Pro	Gln	Arg	Α	ase
		Leu	Pro	Gln	Arg	G	ы
	A	lle	Thr	Asn	Ser	U	<u>r</u>
		lle	Thr	Asn	Ser	С	T
		lle	Thr	Lys	Arg	Α	
		Met/Start	Thr	Lys	Arg	G	
	G	Val	Ala	Asp	Gly	U	
		Val	Ala	Asp	Gly	С	
		Val	Ala	Glu	Gly	Α	
		Val	Ala	Glu	Gly	G	

Ala	: Alanine
Arg	: Arginine
Asn	: Asparagine
Asp	: Aspartic acid
Cys	: Cysteine
Gln	: Glutamine
Glu	: Glutamic acid
Gly	: Glycine
His	: Histidine
lle	: Isoleucine
Leu	: Leucine
Lys	: Lysine
Met	: Methionine
Phe	: Phenylalanine
Pro	: Proline
Ser	: Serine
Thr	: Threonine
Trp	: Tryptophane
Tyr	: Tyrosine
Val	: Valine

Translation: mRNA → Protein

Ribosomes

Watson, Gilman, Witkowski, & Zoller, 1992

Idea #1: Find Long ORF's

Reading frame: which of the 3 possible sequences of triples does the ribosome read?

Open Reading Frame: No stop codons

In random DNA

average ORF = 64/3 = 21 triplets

300bp ORF once per 36kbp per strand

But average protein ~ 1000bp

A Simple ORF finder

start at left end scan triplet-by-non-overlapping triplet for AUG then continue scan for STOP repeat until right end repeat all starting at offset 1 repeat all starting at offset 2

* In bacteria, GUG is sometimes a start codon...

Idea #2: Codon Frequency

In random DNA

Leucine : Alanine : Tryptophan = 6 : 4 : 1

But in real protein, ratios $\sim 6.9 : 6.5 : 1$

So, coding DNA is not random

Even more: synonym usage is biased (in a species dependant way) examples known with 90% AT 3rd base Why? E.g. efficiency, histone, enhancer, splice interactions

Recognizing Codon Bias

Assume

Codon usage i.i.d.; abc with freq. f(abc)

 $a_1a_2a_3a_4...a_{3n+2}$ is coding, unknown frame **Calculate**

$$p_{1} = f(a_{1}a_{2}a_{3})f(a_{4}a_{5}a_{6})\dots f(a_{3n-2}a_{3n-1}a_{3n})$$

$$p_{2} = f(a_{2}a_{3}a_{4})f(a_{5}a_{6}a_{7})\dots f(a_{3n-1}a_{3n}a_{3n+1})$$

$$p_{3} = f(a_{3}a_{4}a_{5})f(a_{6}a_{7}a_{8})\dots f(a_{3n}a_{3n+1}a_{3n+2})$$

$$P_{i} = p_{i} / (p_{1}+p_{1}+p_{3})$$

More generally: k-th order Markov model k=5 or 6 is typical (next lecture)

Codon Usage in $\Phi x174$

