Homework 2:
Similarity search and dimension reduction

Problem 1: Similarity metrics [15 points]

In this problem, you will work with various similarity metrics for data, and think about their pros and cons.
We will be working with the well-known “20 newsgroups” dataset. Each article in the dataset belongs to a
newsgroup (e.g., science, politics, etc.) and is represented as a “bag of words,” a common way of representing
textual data. There is a list wy, ..., wy of all the words that occur in all the documents. To each document
D, we associate a N-dimensional vector x whose i-th coordinate contains the number of occurrences of w;
in D.

This data is contained in newsgroup_data.yaml on the class webpage. This YAML file contains data in
the format

newsgroup_name:
article_id:
word_id: count
word_id: count
word_id: count

article_id:
word_id: count
word_id: count

Note that there are many unique words, i.e. N is very large, but any particular document will only contain
a small set of them. Therefore it will be important to only represent the non-zero entries of the

bag-of-words vector.
We’ll work with the following similarity metrics, as covered in class. In the following, x and y are vectors

representing two bags of words:

e Jaccard Similarity:

Y, min(xi, yi)
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(a) [3 points] Implement the three similarity metrics described above. For each metric, prepare the
following heatmap. The plot will be a 20 x 20 matrix. Rows and columns are indexed by newsgroups. For
each entry (A, B) of the matrix, compute the average similarity of articles in group A with articles in group
B, across all possible pairs of articles in these groups.



(b) [6 points] Based on the heatmaps you created, which of the similarity metrics seem the most suitable
for the data, and why would you expect this to be the case? Are there any pairs of newsgroups that appear
to be very similar? Can you explain why?

(c) [6 points] Imagine now that there was actually a secret twenty first newsgroup that was mistakenly
mixed into the dataset, so that a 1/21-fraction of the data points labeled with each of the 20 newsgroups
was actually from this other newsgroup. The structure of the documents in this hidden newsgroup could
be arbitrary. How could this hidden newsgroup affect our heatmap? Explain which metrics appear to be
more sensitive to the presence of this hidden newsgroup, and how the heatmap could change based on the
structure of the documents in this hidden newsgroup.

Problem 2: Dimension reduction [20 points]

You may have noticed that it takes a non-trivial amount of time to compute pairwise distances for Problem
1 (on the order of several minutes). Here, we will explore how we can use dimension reduction to speed up
this computation. Recall that our vectors in Problem 1 are N dimensional. Our goal will be to reduce them
to a target dimension d, where d < N.

(a) [3 points] Implement a baseline cosine-similarity nearest-neighbor classification system that, for any
given document, finds the document with largest cosine similarity and returns the corresponding newsgroup
label. You should use brute-force search.

Compute the 20 x 20 matrix whose (A, B) entry is defined by the fraction of articles in group A that
have their nearest neighbor in group B. Plot the results using a heat map as in Problem 1.

What is the average classification error (i.e., what fraction of the 1000 articles don’t have the same
newsgroup label as their closest neighbor)?

(b) [3 points] Suppose we're building an article classification system based on the algorithm you just
implemented. We have a dataset of n labeled articles, a total of N distinct words across the articles, and
m distinct newsgroups. What is the asymptotic (Big-Oh) runtime of the algorithm implemented in Part (a)?

Consider the following 2 types of random “sketching matrices” M : R¥*¥.

e Case 1: Each entry of M is drawn randomly and independently from a Gaussian distribution with
mean 0 and variance 1.

e Case 2: Each entry of M is drawn uniformly and independently from {—1,+1}.

Finally, also consider the following deterministic sketching matrix. When N is a power of 2, the Walsh
matriz of size N is a N x N matrix defined recursively by

H, H
H, =[1], HM:[Hj —I-Z] (¢>1).

Now, let your sketching matrix be the first d rows of the the Walsh matrix of size V. Note that for us, N
need not be a power of 2. In this case, just pad out each vector with 0’s at the end until the length of the
vector is a power of 2, and treat that as the length of the vector.

For each type of sketching matrix M, perform the following algorithm. Given a set of N-dimensional
vectors Xi,...,X,, the d-dimensional reduced vector corresponding to x; is given by the matrix-vector
product Mx;. One way to think about M is as a set of d random N dimensional vectors wy,...,wy (i.e.
the rows of M), and the j-th coordinate of Mu; is just (v;, w;).



(c) [4 points] Plot the nearest-neighbor visualization (heat map) as in part (a) for d = 10, 30, 60, 120, for
each of the 3 types of matrices.

What is the average classification error for each d? For which values of the target dimension are the
results comparable to the original data set?

(d) [5 points] How does the choice of the sketching matrix affect the classification error? Can you offer
a plausible explanation for why?

(e) [3 points] Repeat the Big-Oh analysis for the new dimension-reduced algorithm, in terms of n, N, m
and now d as well.

(f) [5 points] Why is it a good idea to do a randomized sketch? Show that there is a dataset of N —d
points where any deterministic sketch would be useless. Find such a data set for the deterministic sketch
matrix described above. Offer a plausible explanation for the difference in behavior between the real data
set and this constructed data set. Hint: M has rank at most d.

(g) [3 points] Why does randomizing the sketching matrix help avoid these issues?



