
Lecture 16: Solving LPs with multiplicative weights

Jerry Li

February 28, 2025

1 Definitions

Multiplicative weights. Recall the (general) learning from experts problem from last lecture. Here, the
setup is the following online learning problem. There are n experts, labeled {1, . . . , n}, and for t = 1, . . . , T
rounds, we repeat the following procedure.

1. The player specifies a distribution over experts pt : [n] → R≥0.

2. The adversary reveals a loss ℓt : [n] → [−1, 1]. Crucially for later, this loss is allowed to depend on pt.

3. The player pays loss

Ei∼pt [ℓt(i)] =

m∑
i=1

pt(i)ℓt(i) = ⟨pt, ℓt⟩ ,

which we can think of as the expected loss of the player, if the player selects a random expert i from
distribution pt, and paying the corresponding loss.

The goal of the player is to minimize regret, defined as

Reg(T) =

T∑
t=1

Ei∼pt
[ℓt(i)]− min

i∈[n]

T∑
t=1

ℓt(i) ,

that is, regret measures how much worse the player performs relative to the best performing expert in
retrospect. The main result that we sketched out last lecture is the following:

Theorem 1.1. The multiplicative weights update achieves regret Reg(T) ≤ O(
√
T log n) .

Linear programming. On the other hand, we had previously also considered the problem of solving linear
programs. Recall that a linear program is specified by:

• n free, real-valued variables x1, . . . , xn.

• A linear objective c ∈ Rn.

• m linear constraints, specified by a1, . . . , am ∈ Rn and values b1, . . . , bm ∈ R.

Then, the objective is to solve the following:

max⟨c, x⟩ s.t. ⟨ai, x⟩ ≥ bi for all i = 1, . . . ,m .

Recall that in general, we might also want to have other types of linear constraints, including ⟨ai, x⟩ ≤ bi
constraints and ⟨ai, x⟩ = bi constraints, however, we can encode these additional types of constraints using
the type of constraint given here. Similarly, we can also do minimization rather than maximization by
negating the objective function. Recall also that we often write the constraints as Ax ≥ b, where A is the
m×n matrix where the i-th row of the matrix is a⊤i , and the inequality is to be interpreted coordinate-wise.

1

2 Preliminaries

The main result of this lecture is a method that allows us to approximately solve linear programs using
multiplicative weights. Initially, this might look quite surprising: after all, MW is a method for online
learning, but linear programming is just an offline optimization problem. But it turns out that online
learning is a surprisingly powerful and general primitive, and can be used to encode very general optimization
problems, including linear programming. However, before we get into the meat of the algorithm, we first
need a couple of preprocessing steps and preliminaries.

From optimization to feasibility Rather than trying to solve for the x that minimizes some objective
function, it will be easier for us to think about feasibility question: namely, is it even possible to find x
satisfying Ax ≥ b, or is this set of constraints infeasible?

It turns out that solving this feasibility problem already suffices to get a good algorithm for optimization.
The trick is to, for some parameter λ, consider the following feasibility question: does there exist x so that
⟨c, x⟩ ≥ λ and ⟨ai, x⟩ ≥ bi for all i = 1, . . . ,m? This is now a feasibility problem over (m + 1) constraints.
Moreover, if we can solve this feasibility problem for any choice of λ, then to find the value of the optimization
problem, we can simply binary search over λ, performing this feasibility check at every point, to find the
largest λ for which this feasibility problem is satisfiable. The resulting λ will then clearly be the solution to
the original optimization problem.1

For the rest of this lecture, in a slight abuse of notation, let’s only consider how to solve the original
feasibility problem on m constraints; this is just for conciseness and to avoid carrying around additional
parameters. So now, we have m constraints a1, . . . , am ∈ Rn and values b1, . . . , bm, and our goal is to either
find x ∈ Rn so that Ax ≥ b, or determine that the problem is infeasible.

Obtaining a width bound One additional parameter our method will require is some notion of the width
of the problem. We will assume that there is some convex set K for which we know a priori that if there
is a feasible solution to the LP, then that solution must necessarily lie in K. For instance, a natural choice
(albeit suboptimal in many settings, it turns out), is to choose K to be a large ℓ2 ball around the origin: i.e.
for some parameter R, we take

K = {x ∈ Rn : ∥x∥2 ≤ R} .

We can think of this as a large circumscribing ball for all possible solutions to our linear program, which
allows us to restrict our search to only points in K. Given this set K, we can then define the width of our
linear program with respect to K, denoted ρ, as

ρ = max
x∈K

{1,max
i∈[m]

(|⟨ai, x⟩ − bi|)} .

Let’s unpack this definition for a second. The width is really just the maximum that any constraint can be
violated by any point in our set K. We then also take a second maximum with 1 to ensure that ρ is never
less than 1, which is there for technical reasons that you don’t really need to worry about.

Solving a 1-constraint LP Finally, we will also need the ability to efficiently solve a linear program with
one constraint subject to the constraint that x ∈ K. That is, we need to solve the following problem: given
K, and given a ∈ Rn and b ∈ R, find x ∈ K so that ⟨a, x⟩ ≥ b if such an x exists, and output NO if no such x
exists. When K is an ℓ2-ball, this is easy: this essentially corresponds to checking the norm of the projection
of 0 onto the line (technically, affine subspace) L = {x : ⟨a, x⟩ = b}, which we can do easily. We leave the
full details of this subroutine as an exercise to the reader. For other choices of K it’s not as immediate, but
it still turns out that we can do this very efficiently.

1Here, we are purposefully ignoring the possibility that the original value of the linear program could be infinite. It’s a nice
exercise to think how to deal with this possibility!

2

3 Solving LPs with MW

With these, we can now state our guarantee:

Theorem 3.1. Let ε > 0. There is an algorithm, which, given m constraints a1, . . . , am ∈ Rn and
b1, . . . , bm ∈ R, and a convex set K satisfying the conditions from the previous section, either certifies
that there is no point x ∈ K so that ⟨ai, x⟩ ≥ bi for all i = 1, . . . ,m, or finds a point x ∈ K so that
⟨ai, x⟩ ≥ bi − ε for all i = 1, . . . ,m. The algorithm runs in time polynomial in n,m, ρ, and 1/ε.

That is, this algorithm efficiently finds a point which is approximately feasible for the linear program, or
verifies that there is no point in K which is a feasible solution. Before we prove this theorem, we make a
couple of remarks:

• As one can back out from the final analysis, assuming that solving 1-constraint LPs over K is not the
bottleneck, it turns out that the overall runtime of this algorithm is actually just

O

(
nmρ logm

ε2

)
.

So when ρ and ε are both constant, our runtime is actually linear (up to logarithmic factors) in the
size of the input, since the input has size O(nm).

• There are two suboptimal dependencies in this runtime: namely, the dependence on ρ and the depen-
dence on 1/ε. In some sense, an ideal algorithm should have no dependence on the width whatsoever!
However, as we’ll see, this is unavoidable for us.

• Similarly, ideally an algorithm should run in time which is polynomial in log 1/ε: this would allow us
to solve any LP specified with B bits of accuracy exactly in time which is polynomial in the overall
size of the problem. However, it turns out for methods based on multiplicative weights, and a more
general class of methods loosely termed “first order” methods, of which multiplicative weights belongs,
a polynomial dependence on 1/ε is somewhat unavoidable.

We will specify an algorithm using the multiplicative weights framework. Note that when specifying such an
algorithm, the only flexibility we have is how the adversary chooses their losses: the player’s responses are
fixed ahead of time by the multiplicative weights strategy. So our job is to be a productive “bad guy” for
the online learning framework.

The high-level idea is that we will treat each of the m constraints as an expert. We will secretly maintain
a sequence of iterates xt (which the player doesn’t actually know about), but the goal is to use the feedback
from multiplicative weights to make it so that all the constraints are satisfied. We will do so by making
the player’s feedback tell us how to reweight the relative importance of every constraint. Ideally, we want
the player to force us to put more emphasis on constraints that are violated, and relatively less emphasis
on constraints which are satisfied. In the end, the hope that by doing so, all the constraints will be equally
satisfied (at least, approximately).

We will do so in a slightly counterintuitive way: we will assign large loss to constraints which are satisfied
by our current iterate, and we will assign small loss to constraints which are violated. The reason for this is
because we want the player to put large weight on constraints which are violated: as we’ll see, this will force
us to pay more attention to them in the next iteration, and hopefully get closer to satisfying them. On the
other hand, we can afford to put less weight on constraints which are satisfied, since they’re okay for now.
Recall that the multiplicative weights update works as follows: given a current set of weights wt, our update
is

wt+1(i) = wt · e−εℓt(i) .

So this update down-weights experts with large loss, and up-weights experts with small loss. Therefore, to
get the desired behavior, we need to put large loss of constraints which are satisfied.

With all of this discussion in mind, we now come to the adversary’s strategy. Let T be some parameter
we will set later. Then, for t = 1, . . . , T , we feed in the following into the multiplicative weights framework:

3

1. We receive a distribution from the player pt.

2. We form the “average” constraint a(t) =
∑m

i=1 pt(i)ai and b(t) =
∑m

i=1 pt(i)bi using the weights from
the player.

3. Solve the 1-constraint LP: find x ∈ K so that ⟨a(t), x⟩ ≥ b(t) if such a point exists. If the 1-constraint
solver says that this is infeasible, terminate and output that the overall LP is infeasible.

4. Otherwise, let xt be the solution to this 1-constraint LP.

5. Form the loss vector

ℓt(i) =
⟨ai, xt⟩ − bi

ρ
,

and give this as feedback to the multiplicative weights player.

At the end of T iterations, if the algorithm has not terminated early, output as our final solution

x̃ =
1

T

T∑
t=1

xt .

The rest of this section is dedicated to the proof of correctness of this algorithm. First, we show that if the
algorithm terminates early, then indeed the LP must have been infeasible:

Lemma 3.2. Suppose that our algorithm ever terminates early. Then there is no point x ∈ K satisfying
Ax ≥ b.

Proof. We will prove the contrapositive: if there was a feasible point for the original LP, then the algorithm
will never terminate early. Indeed, suppose there is x ∈ K so that ⟨ai, x⟩ ≥ bi for all i = 1, . . . ,m. But note
that then, we have that

⟨a(t), x⟩ =

〈
m∑
i=1

pt(i)ai, x

〉
=

m∑
i=1

pt(i)⟨ai, x⟩ ≥
m∑
i=1

pt(i)bi = b(t) ,

where the inequality follows by our assumption that ⟨ai, x⟩ ≥ bi for all i = 1, . . . ,m, and since the pt(i) are
all non-negative. Thus the averaged constraint will be satisfiable, and our algorithm will never terminate
early.

We can now finish the proof of the theorem:

Proof of Theorem. It now remains to prove that if the algorithm does not terminate prematurely, then the
resulting x̃ will satisfy the properties of the theorem, i.e. that it will be an approximately feasible point. In
particular, we will show that it suffices to take

T = O

(
ρ2 logm

ε2
.

)
(1)

To do so, let’s instantiate the regret minimization bound; this is, after all, the only tool we really have!
Before this, we need to briefly verify that we can apply the regret minimization bound: the key thing that we
need to check is that the loss ℓt(i) is always bounded between −1 and +1. Recall that ℓt(i) = (⟨ai, xt⟩−bi)/ρ.
But this is exactly why we divide the loss by ρ: in particular, since xt ∈ K, we know that

|⟨ai, xt⟩ − bi| ≤ max
x∈K

|⟨ai, x⟩ − bi| ≤ ρ ,

so indeed, the loss vector is entrywise bounded by 1 in magnitude. So we can apply the regret guarantee.

4

Rearranging slightly, the regret bound is equivalent to:

min
i∈[m]

T∑
t=1

ℓt(i) ≥
T∑

t=1

m∑
i=1

pt(i)ℓt(i)−O(
√
T logm) ,

Now, let’s just plug in the definition of ℓt, and there is where something kind of magical happens. Multiply
both sides by ρ and divide by T , and we obtain that

min
i∈[m]

1

T

T∑
t=1

(⟨ai, xt⟩ − bi) ≥
1

T

T∑
t=1

m∑
i=1

pt(i)(⟨ai, xt⟩ − bi)−O

(
ρ

√
logm

T

)
,

Now look at the left-hand side: this is exactly equal to mini∈[m]⟨ai, x̃⟩− bi, by the way we defined x̃. On the
other hand, if we consider the first term on the right-hand side, we observe that for any t, we get that

m∑
i=1

(⟨ai, xt⟩ − bi) = ⟨a(t), xt⟩ − b(t) ,

but by the way we chose xt, this is always non-negative. Hence the regret bound implies that

min
i∈[m]

⟨ai, x̃⟩ − bi ≥ −O

(
ρ

√
logm

T

)
.

By our choice of T in (1) and setting constants appropriately, we obtain that O(ρ
√

logm
T) ≤ ε. So we have

shown that for all i ∈ [m], we must have

⟨ai, x̃⟩ ≥ bi − ε ,

which is what we wanted to show.

5

