
Homework 7:
Compressive sensing

For this homework, you should use the cvxpy package for convex programming. There are installation
instructions linked on the course webpage. If you are using colab, it should also be installed by default.

Problem 1: Compressive Sensing

Consider the image wonderland-tree.png. If it’s easier to use, it’s also represented as a 2D binary array in
the file wonderland-tree.txt.

(a) [4 points] Let n be the total number of pixels and let k be the total number of 1’s. What is k/n?
Recall that compressive sensing only works when the image is sparse, so we are hoping that k/n ≪ 1.

(b) [9 points] Fix a 1200 × 1200 matrix A of independently chosen N(0, 1) entries. Let Ar denote the
first r rows of A. Let x be the image represented as a vector of 1200 pixels. Our compressed image will be
br = Arx.

Based on Lecture 12, write a linear program that recovers an approximation xr to x from br and verify
using numpy.allclose() that x700 = x up to numerical precision (in other words, that your recovery is
“exact.”)

(c) [7 points] Let r∗ be the smallest r such that |x− xr|1 < 0.001. Find r∗. Hint: Use binary search.

(d) [5 points] Plot ∥xi − x∥1 for i ∈ {r − 10, r − 9, . . . , r1, r, r + 1, r + 2}. Is there a sharp drop-off?

(e) [7 points] Now let A be a 1200 × 1200 matrix whose entries are chosen independently from the
distribution:

Aij =


−1 with probability p

2

+1 with probability p
2

0 with probability 1− p.

For each value of p ∈ [0, 1], let r(p) denote the average of r∗ over 5 trials, where r∗ is the smallest value r
such that |x− xr|1 < 0.001. Report the value of r(0.5).

(f) [5 points] Plot the value r(p) for p ∈ 0.2, 0.4, 0.6, 0.8, 1.0.

(g) [6 points] How does the average number of measurements r(p) behave as a function of p? Can you
offer an explanation? Why would smaller values of p be better for implementing the measurements?

(EC) [3 points] In class, we (vaguely) justified why a Gaussian matrix should satisfy the restricted
isometry condition with high probability. How does the justification change for this new ensemble of random
matrices?

1

Problem 2: Image Inpainting

See the PNG file jinx corrupted.png. You will explore some methods for reconstructing the original image,
which is from Homework 5. The following Python code will read in the image:

from PIL import Image

from numpy import array

img = array(Image.open("jinx_corrupted.png"), dtype=int)[:,:]

Known = (img > 0).astype(int)

Using matplotlib, you should display Known and make sure it matches what you expect:

import matplotlib.pyplot as plt

plt.gray()

plt.imshow(Known)

plt.show()

(a) [4 points] First explore the naive solution for image reconstruction. For every pixel in img that is
0 (unknown), replace it with the average of its (up to 4) known neighbors’ pixels. If there are no known
neighbors, then keep the pixel value 0. Submit your recovered image, as well as the code, and a two-to-three
sentence explanation for why the naive solution seems to perform poorly.

The following code should reconstruct Jinx pretty well:

from cvxpy import Variable, Minimize, Problem, multiply, tv

U = Variable(img.shape)

obj = Minimize(tv(U))

constraints = [multiply(Known, U) == multiply(Known, img)]

prob = Problem(obj, constraints)

prob.solve(verbose=True)

#the recovered image is now in U.value

Warning: This code will take a while (it took around 10 minutes for me on colab)!

(b) [4 points] Submit your recovered image and a 1-2 sentence comparison between this image and the
one you reconstructed naively.

(c) [4 points] The documentation for tv is linked from the course website. Write down the form of this
function, and explain why this function is convex.

(d) [8 points] Now that you have a formula for tv, write the entire convex program that this code is
solving, and then interpret what the convex program is doing.

(e) [4 points] In class, and in Problem 1, we used the ℓ1 norm as our distance metric. Briefly justify in
2-3 sentences why it makes sense conceptually to use tv as opposed to ℓ1 norm for recovering a corrupted
image.

2

