
Homework 5:
Low rank approximation

Problem 1: Image compression

Download the image jinx.png from the website. It is a 563× 1000 greyscale image which you can think of
as a 563× 1000 matrix M of integer pixel values between 0 and 255.

(a) [6 points] Run SVD and recover the rank-k approximation ofM , for k ∈ {1, 2, 5, 10, 20, 50, 75, 100, 563}.
You should find that the resulting matrices cannot always be immediately interpreted as images themselves.
Explain why this is the case, and perform some simple postprocessing to obtain pictures from these low rank
approximations. In your assignment, include your recovered image for k = 1, 10, 50, 75.

(b) [3 points] Why do we stop at k = 563?

(c) [3 points] Can you propose an interpretation for the first (left and right) singular vectors?

(d) [3 points] How much memory is required to efficiently store the rank k approximation? Give an
expression for all k. Assume that each floating point number takes one unit of memory. How much better
is this than naively saving the image as a matrix of pixel values?

(e) [3 points] What are some kinds of artifacts do you notice on the compressed images, especially for
small values of k? Can you give a reasonable explanation for why you might expect to see these types of
artifacts?

Problem 2: Word embeddings

A word embedding is a mapping from words to vector representations of the words. Ideally, the geometry
of the vectors will capture the semantic and syntactic meaning of the words. For example, words similar
in meaning should have representations that are close to each other in the vector space. A good word
embedding provides a means for mapping text into vectors, from which one can then apply all the usual
learning algorithms that take, as input, a set of vectors.

Word embeddings have taken natural language processing (NLP) by storm in the last few years and have
become the backbone for numerous NLP tasks such as question answering and machine translation. There
are neural-network approaches to learning word embeddings, but in this question, we will study a simple
SVD-based scheme that does a surprisingly good job at learning word embeddings.

Your input data is a word co-occurrence matrix M of the 10,000 most frequent words from a Wikipedia
corpus with 1.5 billion words. Entry Mij of the matrix denotes the number of times in the corpus that the
i-th and j-th words occur within 5 words of each other. The file co occur.csv.gz contains the symmetric
co-occurrence matrix M . The file dictionary.txt contains the dictionary for interpreting this matrix: The
i-th row of the dictionary is the word corresponding to the i-th row and column of M . The dictionary is
sorted according to the word frequencies. Therefore, the first word in the dictionary the is the most common
word in the corpus, and the first row and column of M contain the co-occurrence counts of the with every
other word in the dictionary.

Before you start, make sure you can import the dataset and do a few trials to ensure you can interpret
the entries of M using the dictionary.

1



(a) [3 points] For the rest of the problem, let us use M̂ to denote the normalized matrix defined by

M̂ij = ln(1 +Mij)

Compute the rank-100 approximation to M̂ according to the singular value decomposition:

M̂ = UDV T

and plot the top 100 singular values of M̂ . Does M̂ look close to being low rank?
Note: Computing the full SVD will be computationally intensive; it is better to compute the top 100

singular values and singular vectors and keep those around as you will be using them later.

(b) [5 points] Since M̂ is symmetric, the left and right singular vectors are the same, up to flipping signs
of some columns. You will now interpret the singular vectors (columns of U or V ). For any i, denote by vi
the singular vector corresponding to the i-th largest singular value. The coordinates of this vector correspond
to the 10,000 words in our dictionary.

Find six interesting/interpretable singular vectors, and describe what semantic or syntactic structures
they capture. For each of the six vectors you choose, provide a list of the 10 words corresponding to the
coordinates with the largest values and the 10 words corresponding to the coordinates with the smallest
values. Not all singular vectors have easy-to-interpret semantics; why would you expect this to be the case?

(c) [5 points] Normalize the rows of U so that each one has unit ℓ2 norm. The i-th row now represents an
embedding of the i-th word into R100. We will explore a curious property of these word embeddings: certain
directions in the embedded space correspond to specific syntactic or semantic concepts.

Let u1 be the word embedding for woman and let u2 be the word embedding for man. Define the vector:

u = u1 − u2

Project the embeddings of the following words onto u: boy, girl, brother, sister, king, queen,

he, she, john, mary, all, tree. Present a plot of these projections and discuss the results.

(d) [5 points] Present a similar plot for the words math, matrix, history, nurse, doctor, pilot,

teacher, engineer, science, arts, literature, bob, alice. Discuss the implications of these pro-
jections. Why might this be problematic? Consider how word embeddings might impact applications such
as job candidate searches on LinkedIn.

(e) [14 points] Now you will explore in more depth the property that directions in the embedded space
correspond to semantic or syntactic concepts.

1. [4 points] Define the similarity between two words i and j as the cosine similarity of their embeddings:

similarity(wi, wj) = ⟨wi, wj⟩

First, explain why for these vectors, this coincides with the usual notion of cosine similarity we’ve seen
in the past. Then, using this definition, find the most similar words to washington.

2. [10 points] Word embeddings can solve analogy tasks, such as:

boat is to plane as captain is to

by finding the word whose embedding is closest to the vector:

wplane − wboat + wcaptain

Using the dataset in analogy task.txt, compute the accuracy of the word embedding approach for
solving analogies. Discuss the results and identify difficult analogies for this approach.

2


