
Homework 4:
Principal component analysis

Problem 1: PCA vs least squares [21 points]

Both PCA and least squares regression (LS) are ways to infer linear relationships between data. In this prob-
lem, you will develop some intuition for the differences between these two approaches, and an understanding
of the settings that are better suited to using PCA or better suited to using the least squares fit.

The high level bit is that PCA is useful when there is a set of latent (hidden/underlying) variables, and
all the coordinates of your data are linear combinations (plus noise) of those variables. The least squares
fit is useful when you have direct access to the independent variables, so any noisy coordinates are linear
combinations (plus noise) of known variables.

In this problem we’ll consider a simple synthetic example with two dependent variables x and y, where the
hidden relationship between the two variables is that y = 3x, i.e. the goal is to recover the coefficient 3. As
a reminder, given a dataset (x1, y1), . . . , (xn, yn) of predictors xi and dependent values yi, the least squares
fit is the value that minimizes the least-squares error, i.e. least squares will return the line ℓ(x) : R → R
that minimizes

n∑
i=1

(ℓ(xi)− yi)
2 .

We’ll be primarily interested in recovering the slope of the line; note that in 1D this has a very simple form,
namely, if we let x = (x1, . . . , xn), and y = (y1, . . . , yn), then the slope of the minimizer is given by

⟨x− µx · 1, y − µy · 1⟩
∥x− µx∥22

,

where µx and µy are the means of x and y, respectively, and 1 is the all-ones vector of length n.

(Warm-up / setup) [don’t submit]

• Write a routine pca recover that takes a vector x = (x1, . . . , xn) and a vector y = (y1, . . . , yn) and
returns the slope of the first component of the PCA (namely, the second coordinate divided by the
first).

• Write a routine ls recover that takes x and y and returns the slope of the least squares fit.

• Set x = (.001, .002, .003, ..., 1) and y = 3x. Make sure both routines return 3.

(a) [6 points] Let D be the distribution which is σ with probability 1/2 and −σ with probability 1/2, so
that the variance of D is σ2. Suppose the xi and yi are all independent and drawn from D, for i = 1, ..., n.
What does PCA recover, and what does LS recover, and how does the behavior change with n and σ for
both? Briefly justify your answer.
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(b) [3 points] We first consider the case where x is an independent variable that we get exactly, and we
get noisy measurements of y. Let x = (.001, .002, .003, ..., 1), and for a given noise level σ > 0, let

ŷi ∼ 3 · xi +N (0, σ2) =
3i

1000
+N (0, σ2) , i = 1, . . . , 1000 .

Make a scatter plot with σ on the x-axis, and the output of pca recover and ls recover on the y-axis.
For each σ ∈ (0, 0.05, 1, . . . , 0.45, 0.5), take a sample of ŷ1, . . . , ŷ1000, plot the output of pca recover as a
red dot, and ls recover as a blue dot. Repeat 40 times.

Note that in numpy, the code numpy.randn(0, 1000)*s generates an array of 1000 independent samples
from N (0, s2).

(c) [3 points] Now, we consider the case where there is noise on both x and y. For a given noise level
σ > 0, and for i = 1, . . . , 1000 let

x̂i ∼ xi +N (0, σ2) =
i

1000
+N (0, σ2)

ŷi ∼ 3 · xi +N (0, σ2) =
3i

1000
+N (0, σ2) .

Just like in part (b), for each σ ∈ (0, 0.05, 1, . . . , 0.45, 0.5), take a sample of x̂1, . . . , x̂1000 and ŷ1, . . . , ŷ1000,
plot the output of pca recover as a red dot, and ls recover as a blue dot. Repeat 40 times.

(d) [9 points] Answer the following:

1. Why does PCA do poorly with just noise on the y?

2. Why does PCA do well with noise on both x and y?

3. Why does LS do poorly with noise on both x and y?

Problem 2: PCA for genetic data [26 points]

The file pca-data.txt on the course webpage contains data from the 100 genomes project. Each of the lines
in the file represents an individual. The first three columns contain: an individual’s unique identifiers, his or
her biological sex (1=male, 2=female), and the population to which they belong. The encodings for these
populations can also be found in the course webpage. The subsequent columns of each line are a sample of
the nucleobases from that individual’s genome.

Convert the file into a matrix as follows. Let d be the number of columns, and n be the number of rows.
For every column j = 1, . . . , d, let ηj denote the most common nucleotide in that column. Call that the
mode for column j. Construct an n× d matrix X as follows. For individual i, let Xij = 0 if individual i has
ηj in position j, and 1 otherwise. In other words, individual i has a 1 at column j if they have a mutation
at position j.

Recall that if we are going to perform PCA on vectors x1, . . . , xn ∈ Rd, then we want to first de-mean
then, i.e. replace them with x1 − µ, x2 − µ, . . . , xn − µ, where

µ =
1

n

n∑
i=1

xi .

In this problem, you will be asked to find the top k principal components, for different values of k. By
this, we mean the k orthonormal vectors v1, . . . , vk that maximize the objective

k∑
j=1

n∑
i=1

⟨vj , xi⟩2 .

Recall, as discussed in lecture, that these vectors may not be unique, but they will be for this dataset. You
may use the Python sklearn package to compute these components.
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(a) [4 points] We will first examine the first 2 principal components of X. These components contain
lots of information about our data set. Create a scatter plot with each of the 995 rows of X projected onto
the first two principal components. In other words, the horizontal axis should be v1 and the vertical axis
v2, and each individual should be projected onto the subspace spanned by v1 and v2. Your plot should use
a different color for each population and include a legend. (Recall that the population data occurs in the
third column.)

(b) [6 points] In two sentences, list 1 or 2 basic facts about the plot created in part (b). Can you interpret
the first two principal components? What aspects of the data do the first two principal components capture?
Hint: think about history and geography.

(c) [5 points] We will now examine the third principal component of X. Create another scatter plot
with each individual projected onto the subspace spanned by the first and third principal components. After
plotting, play with different labeling schemes (with labels derived from the meta-data) to explain the clusters
that you see. Your plot must include a legend.

(d) [5 points] In one sentence, what information does the third principal component capture?

(e) [6 points] As noted previously, the top 3 principal components of X are all unique. How would you
add an additional row to the matrix to make the first principal component not unique? For this additional
row, you don’t need to be restricted to a {0, 1} vector. More generally, assume that the first k + 1 principal
components are all unique. How would you add an row to make the k-th principal component not unique?
Again, this row doesn’t need to be {0, 1}-valued. Hint: Use the fact that the principal components
are orthonormal.
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