
Homework 3:
Linear regression, optimization, and regularization

Problem 1: Linear regression three ways [32 points]

Consider the following problem of fitting a linear model. Given n data points x1, . . . , xn ∈ Rd with labels
y1, . . . , yn ∈ R, our goal is to find a coefficient vector θ ∈ Rd that minimizes the squared error loss function
on the training set:

Ltrain(θ) =

n∑
i=1

(⟨θ, xi⟩ − yi)
2
, (1)

where ⟨u, v⟩ =
∑d

i=1 uivi is the standard inner product for vectors.
We will draw the data for this problem from the following synthetic model. For the training data, we

will select x1, . . . , xn drawn independently from a d-dimensional standard Gaussian distribution. Note that
a standard d-dimensional Gaussian is a random vector whose coordinates are independent N (0, 1) random
variables.

Then, we choose a true coefficient vector θ∗ ∈ Rd also from this distribution, and for i = 1, . . . , n, the
corresponding label yi is given by

yi = ⟨θ∗, xi⟩+ ηi ,

where ηi is random noise drawn from N (0, (0.5)2).
We will take d = 20, and n = 2000. The following Python code generates the training set:

d = 20 # dimensions of data

n = 2000 # number of data points

X = np.random.normal(0,1, size=(n,d))

theta_star = np.random.normal(0,1, size=(d,1))

y = X.dot(theta_star) + np.random.normal(0,0.5,size=(n,1))

(a) [3 points] It’s a classical fact that least-squares regression (i.e., find θ minimizing (1) on the training
set) has a simple closed-form formula. Let X ∈ Rn×d be a matrix whose rows are xi, i.e.

X =


xT
1

xT
2
...
xT
n

 ,

and let y ∈ Rn denote the (column) vector of the labels, i.e. y = (y1, . . . , yn)
T . Then, the minimizer of (1)

is given by θ̂ = (XTX)−1XT y. Solve for θ̂ and report the value of the objective. For comparison, what is
the total squared error for θ being the vector of all zeros?

The main downside of this approach is that it’s quite slow, since it requires a matrix-matrix multiplication
and inversion, so in practice, people often use faster methods that give approximations, which is what we’ll
explore next. However, since our datasets are pretty small, we can still run this method, and it will serve as
a good sanity check for the rest of the problem.
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(b) [4 points] Now, draw m = 2000 new samples x̂1, . . . , x̂n ∈ Rd from the same distribution, and on this

new set of points, which we will treat as a test set, report the average loss evaluated at θ̂:

Ltest(θ) =
1

m

m∑
i=1

(⟨θ∗, x̂i⟩ − ⟨θ, x̂i⟩)2 .

Is this value small? How does this behavior change as we vary m? Can you explain why this happens?

(c) [4 points] We can also ask how well our solution θ̂ approximates θ∗, something known as parameter
recovery. Here, we’ll use the ℓ2 distance as our notion of closeness: d(θ, θ∗) = ∥θ − θ∗∥2. Try varying the size
of the training set n ∈ {500, 1000, 1500, 2000}. How does changing n affect the distance? Does the training
loss Ltrain or the test loss Ltest (take m = 2000) correlate better with the distance between the parameters?
Explain why.

(EC) [4 points] Write the expected test loss as a deterministic expression involving the parameters θ and
θ∗, and give a mathematical justification why (Hint: recall some of the properties of Gaussians we discussed
in Lecture 4).

(d) [6 points] First, review the primer on gradient descent linked on the course webpage.
You will solve the same setup as in part (a) using gradient descent on the training loss function Ltrain.

Recall that the gradient is a linear operator, so

∇Ltrain(θ) =

n∑
i=1

∇Li(θ) , (2)

where Li(θ) = (⟨θ, xi⟩ − yi)
2. What is the expression for the gradient of ∇Ltrain?

Using this expression, run gradient descent to find a coefficient vector θ that approximately minimizes
Ltrain. Run gradient descent three times, with step sizes α ∈ {0.00007, 0.00035, 0.0007}, each time starting
at initial value θ0 being the all zeros vector. Plot the objective function value for 20 iterations of gradient
descent for all three choices of step size on the same graph.

Which step size has the best final objective value? Discuss how the choice of step size seems to affect
the behavior of gradient descent. Feel free to experiment with other choices of step size to support your
argument.

(e) [3 points] When the objective function is linear (as is it for us, recall (2)), it’s often the case (as it is
for us) that each individual gradient ∇Li can be evaluated much more efficiently than the whole gradient.
In such settings, it’s often better to use stochastic gradient descent (SGD for short).

In SGD, at iteration t, at iterate θt, instead of computing ∇Ltrain(θt), we will compute a random value
Zt that will give the gradient in expectation, i.e.:

E[Zt] = ∇Ltrain(θt) .

When the objective function is linear, a straightforward way of doing this is to choose an index i ∈ {1, . . . , n}
uniformly at random, and letting Zt = n · ∇Li(θt). In practice, we often omit the scaling with n, so in our
experiments, we’ll take Zt = ∇Li(θt).

With these definitions, write down pseudocode for SGD with step size α. Your algorithm should crucially
only compute the gradient of a single data point every iteration.
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(f) [6 points] Now, run SGD with step size α ∈ {0.0005, 0.005, 0.01}, each for T = 20, 000 iterations. Plot
the objective function value vs. the iteration number for all 3 step sizes on the same graph. Discuss how
the step size appears to affect the convergence of SGD, and compare this to what you observed for standard
gradient descent.

Compare the performance of the two methods. How do the best final objective function values compare?
How many times does each algorithm use each data point? Also report the step size that had the best final
objective function value and the corresponding objective function value.

(g) [6 points: 2 for performance and 4 for discussion] You’ve seen the effect of step size on both
methods, and you should see pros and cons for using larger and smaller step sizes. In practice, folks often
use a variable step size as an attempt to get the “best of both worlds”. That is, instead of fixing a step size
for α throughout the entire algorithm, they choose different αt for every iteration. Can you try to design a
better step size schedule (other than a constant one) that is able to get this best of both worlds performance?
Report the best performance you’re able to achieve, the corresponding schedule, and explain why you chose
this step size schedule.

Don’t worry about getting the best possible performance! The goal of this problem is just so that you
can get a sense of the general principles at play here. In practice, designing a good step size schedule for
your specific task is often both very important and also very much black magic.

Problem 2: Regularization [20 points]

So far, we’ve been in a setting where we have way more data points than dimensions (i.e. n ≫ d), and hence,
you should’ve seen that the generalization error was pretty good (i.e. your test loss in (b) should’ve been
pretty small....spoilers).

We’ll now consider the setting where n = d = 200, and examine what changes regarding training and
test loss. Use the following Python code to generate your train and test data:

train_n = 200

test_n = 2000

d = 200

X_train = np.random.normal(0,1, size=(train_n,d))

theta_star = np.random.normal(0,1, size=(d,1))

y_train = X_train.dot(theta_star) + np.random.normal(0,0.5,size=(train_n,1))

X_test = np.random.normal(0,1, size=(test_n,d))

y_test = X_test.dot(theta_star) + np.random.normal(0,0.5,size=(test_n,1))

We can define the data matrices Xtrain and Xtest analogously to how we defined X previously, and it
will be convenient for us to work with the normalized losses here:

L̂train(θ) =

∥∥Xtrainθ − y
∥∥
2

∥y∥2
and L̂test(θ) =

∥Xtestθ − y∥2
∥y∥2

. (3)

(a) [2 points] As a baseline for comparison, compute the linear regression solution from Problem 1 without
any regularization. This should be much faster in this setting. Explain why this is the case.

Report the normalized training and test error averaged over 10 trials.

(b) [5 points] Now, consider what happens when you try an ℓ2 regularization (known in the literature as
ridge regression). Now, the training loss function is given by

Lridge(θ) =

n∑
i=1

(⟨θ, xi⟩ − yi)
2
+ λ ∥θ∥22 ,
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where λ is a regularization parameter. It turns out that this still has a closed form solution, given by

θridge =
(
XT
trainXtrain + λI

)−1
Xtrainy .

Present a plot of the normalized training and test error for λ ∈ {0.0005, 0.005, 0.05, 0.5, 5, 50, 500}. As before,
you should average over 10 trials. Discuss the characteristics of your plot and compare your answers to part
(a).

(c) [5 points] Now, try running SGD on the original (not regularized!) objective function Ltrain,
with initial guess being the all zeros vector. Run SGD for 1, 000, 000 iterations for step size choices
α ∈ {0.0005, 0.0005, 0.005}. Report the normalized training error and test error for each of these settings,
averaged over 10 trials.

How does the SGD solution compare with the solutions achieved via regularization and the unregularized
solution you got for part (a)? Note that SGD is not doing any explicit regularization either!

(d) [8 points] For all the choices of α in the previous setting that didn’t diverge, let’s examine the behavior
of SGD more closely. For each such α:

• Plot the normalized training error vs. iteration number.

• Plot the normalized test error vs. iteration number.

• Plot the ℓ2 norm of the SGD solution vs iteration number.

Discuss the plots. What can you say about the generalization ability of SGD with different step sizes? How
does this relate to the ℓ2 norm of the solution?

Problem 3: Try anything [11 points]

Consider now the under-determined setting where d > n and the traditional theory of generalization says
that it should be much more difficult. Take d = 300 and n = 200.

[11 points: 4 for performance and 7 for analysis / discussion] Try to achieve the best test error
you can, using whatever method you can think of...although we suggest some combination of the things
discussed above. The only constraint is that the learning algorithm is only allowed to touch the training
set, and cannot refer to θ∗. Briefly discuss the approach you used, the thought process that informed your
decisions, and the extent to which you believe a better test error is achievable.

Your score will be based on a combination of the short discussion and the average test error you obtain.
A paragraph of analysis is enough to earn full credit—you don’t need to go too crazy.
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