
Homework 2:
Similarity search and dimension reduction

Problem 1: Similarity metrics [15 points]

In this problem, you will work with various similarity metrics for data, and think about their pros and cons.
We will be working with the well-known “20 newsgroups” dataset. Each article in the dataset belongs to a
newsgroup (e.g., science, politics, etc.) and is represented as a “bag of words,” a common way of representing
textual data. There is a list w1, . . . , wN of all the words that occur in all the documents. To each document
D, we associate a N -dimensional vector x whose i-th coordinate contains the number of occurrences of Wi

in D.
This data is contained in newsgroup_data.yaml on the class webpage. This YAML file contains data in

the format

newsgroup_name:

article_id:

word_id: count

word_id: count

word_id: count

...

article_id:

word_id: count

word_id: count

...

Note that there are many unique words, i.e. N is very large, but any particular document will only contain
a small set of them. Therefore it will be important to only represent the non-zero entries of the
bag-of-words vector.

We’ll work with the following similarity metrics, as covered in class. In the following, x and y are vectors
representing two bags of words:

• Jaccard Similarity:

J(x,y) =

∑N
i=1 min(xi,yi)∑N
i=1 max(xi,yi)

.

• L2 Similarity: L2(x,y) = −∥x− y∥2 = −
(∑n

i=1(xi − yi)
2
)1/2

.

• Cosine Similarity:

SC(x,y) =

∑N
i=1 xi · yi

∥x∥2 ∥y∥2
.

(a) [3 points] Implement the three similarity metrics described above. For each metric, prepare the
following heatmap. The plot will be a 20 × 20 matrix. Rows and columns are indexed by newsgroups. For
each entry (A,B) of the matrix, compute the average similarity of articles in group A with articles in group
B, across all possible pairs of articles in these groups.
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(b) [6 points] Based on the heatmaps you created, which of the similarity metrics seem the most suitable
for the data, and why would you expect this to be the case? Are there any pairs of newsgroups that appear
to be very similar? Can you explain why?

(c) [6 points] Imagine now that in each newsgroup, there was also an additional adversarially chosen
article added to this newsgroup by a potentially malicious entity, whose sole goal in life is to mess up your
heatmaps. How badly can the heatmaps for each similarity metric be altered, and how does this depend on
the choice of similarity metric? If one was concerned about such outliers, how could you mitigate the effect
of such an article?

Problem 2: Dimension reduction [20 points]

You may have noticed that it takes a non-trivial amount of time to compute pairwise distances for Problem
1 (on the order of several minutes). Here, we will explore how we can use dimension reduction to speed up
this computation. Recall that our vectors in Problem 1 are N dimensional. Our goal will be to reduce them
to a target dimension d, where d ≪ N .

(a) [3 points] Implement a baseline cosine-similarity nearest-neighbor classification system that, for any
given document, finds the document with largest cosine similarity and returns the corresponding newsgroup
label. You should use brute-force search.

Compute the 20 × 20 matrix whose (A,B) entry is defined by the fraction of articles in group A that
have their nearest neighbor in group B. Plot the results using a heat map as in Problem 1.

What is the average classification error (i.e., what fraction of the 1000 articles don’t have the same
newsgroup label as their closest neighbor)?

(b) [3 points] Suppose we’re building an article classification system based on the algorithm you just
implemented. We have a dataset of n labeled articles, a total of N distinct words across the articles, and
m distinct newsgroups. What is the asymptotic (Big-Oh) runtime of the algorithm implemented in Part (a)?

Consider the following 3 types of random “sketching matrices” M : Rd×N . For all three cases, M will be a
random matrix, whose entries are all drawn independently.

• Case 1: Each entry of M is drawn randomly for a normal distribution with mean 0 and variance 1.

• Case 2: Each entry of M is drawn uniformly at random from {−1,+1}.

• Case 3: Each entry of M is drawn uniformly at random from {0, 1}.

For each type of random matrixM , perform the following algorithm. Given a set ofN -dimensional vectors
x1, . . . ,xn, the d-dimensional reduced vector corresponding to xi is given by the matrix-vector product Mxi.
One way to think about M is as a set of d random N dimensional vectors w1, . . . ,wd (i.e. the rows of M),
and the j-th coordinate of Mvi is just ⟨vi,wj⟩.

(c) [7 points] Plot the nearest-neighbor visualization (heat map) as in part (a) for d = 10, 30, 60, 120, for
each of the 3 types of matrices.

What is the average classification error for each d? For which values of the target dimension are the
results comparable to the original data set?

(d) [5 points] How does the choice of the sketching matrix affect the classification error? Can you offer
a plausible explanation for why?
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(e) [3 points] Repeat the Big-Oh analysis for the new dimension-reduced algorithm, in terms of n,N,m
and now d as well.

(f) [5 points] Why is it a good idea to do a randomized sketch? Suppose instead we used a fixed matrix
M ∈ Rd×N as the sketching matrix above. Show that there is a dataset of N − d points where the sketch
would be useless. Why does randomness avoid this? Hint: M has rank at most d
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