
Homework 1:
Hashing and load balancing

Problem 1: The power of two choices [22 points]

Consider the following load-balancing setup: there are m balls that arrive one at a time, and each ball must
be thrown into one of n bins B1, . . . , Bn as it arrives. Let L denote the maximum number of balls in any bin.
A good load-balancing scheme should have L small, but at the same time, should be simple to implement.

Compare the following four load balancing rules:

1. Select one of the n bins uniformly at random.

2. Select two bins uniformly at random, and place the ball into whichever bin has fewer balls so far
(breaking ties arbitrarily).

3. Same as the previous strategy, but with picking 3 bins uniformly at random.

4. Select one of the n bins Bi uniformly at random, and place the ball into either Bi or B(i+1) mod n,
whichever one has fewer balls so far (breaking ties arbitrarily).

Fun fact: strategy (2) is known as “the power of two choices,” and Anna Karlin was one of the people who
invented it!

(a) [3 points] Write code to simulate strategies 1-4. For each strategy, there should be a function which
takes as input m,n, and outputs the maximum number of balls in any bin.

(b) [5 points] Let m = 1, 000, 000, n = 100, 000 and simulate the four strategies 100 times. For each
strategy, plot the histogram of the maximum loads. Discuss the pros and cons of each strategy.

(c) [6 points] Recall the consistent hashing problem from lecture. Model consistent hashing as a balls-into-
bins problem, and discuss how you may use insights from this homework problem to augment the consistent
hashing scheme discussed in lecture, and what tradeoffs different strategies will give.

Some of these strategies are specific instances of a more general class of strategies. Imagine placing the n
bins onto the vertices of a graph G. When a ball arrives, sample a uniformly random edge of this graph,
and let B1, B2 be the vertices of this edge, then place the ball into whichever of B1 and B2 has fewer balls
so far (breaking ties arbitrarily).

(d) [5 points] Which of these four strategies can be cast as an instance of this more general class? For
each of these strategies, identify the associated graph.

(e) [3 points] Why might one graph perform better than another for this task?

(f) [EC, 1-3 points] Imagine you could design a graph for this problem, but each node could only have
degree at most 3. What kind of graph might be good?

(g) [EC, 1−∞ points] Given an arbitrary graph, characterize the maximum load as a function of m,n,
and statistics of the graph. Warning: this is a famous open question!
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Problem 2: Count-min sketch [30 points]

You will implement and experiment with a count-min sketch using ℓ ∈ {1, . . . , 6} hash tables and b = 256
buckets. You will run 10 different trials of this, so that you’ll get a sense for both the accuracy of the sketch,
as well as how the errors are distributed.

Your sketch should be able to handle arbitrary strings (although in the homework you’ll only need to
deal with integers). Your code should additionally take an integer seed s as input. The hash functions
hi : Σ∗ → {0, 1, . . . , 255} for i = {0, . . . , 5} are computed as follows: For x ∈ Σ∗, define hi(x) to be the
(i + 1)-th byte of the MD5 hash of x ◦ str(s), where str(·) is the string representation of an integer and ◦
corresponds to concatenation of strings.

Do not implement MD5 yourself; most modern programming languages have packages to compute MD5
hashes. For example, in Python3, you can use the hashlib library and

hashlib.md5(foo.encode("utf-8")).hexdigest()

to compute the MD5 score of the string foo (returning a hexadecimal string).

(a) [4 points] Implement a data structure that implements the algorithm described above. You data
structure should support the functions inc(x, s) and count(x, s).

You will consider the following dataset, which you’ll feed into your count-min sketch. Let n be a parameter
we’ll set later. The for i = 1, . . . , n, the integer i will appear in the dataset i2 times. Then, for i =
n+ 1, . . . , n2, the integer i will appear in the dataset once.

(b) [5 points] We say that an integer in this dataset is a heavy hitter if the number of times it appears in
the dataset is at least 1% of the size of the total dataset. Find a general expression, as a function of n, for
what elements of this dataset are heavy hitters.

For the rest of the problem, we’ll set n = 150, and we’ll use count-min sketch to find heavy hitters of this
dataset with a small amount of memory, as discussed in the lecture notes. Note that if we wanted to store the
entire stream in memory, we’d need to store the counts for 1502 = 22500 numbers. However, our count-min
sketch will only need to store at most 256 · 6 = 1536 different counts!

Consider the 3 following orders the numbers can arrive:

1. Heavy first: Sort the elements in decreasing order of frequency

2. Heavy last: Sort the elements in ascending order of frequency

3. random: Randomly permute the list

(c) [6 points] For each of the 3 data streams, feed it into your count-min sketch, and compute the following
following quantities averaged over 10 trials. In trial i, you should use seed s = i.

• The sketch’s estimate of the frequency of the number 100

• The sketch’s estimate for the total number of heavy hitters in the stream

Does the order of the stream affect the estimated counts? Explain what the data says, and propose a
plausible explanation.

(d) [4 points] Implement the following conservative update optimization. When you are updating the
five counters, only increment the subset of counters for which the current count is smallest (if a few are tied
for smallest, increment all of those).
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(e) [4 points] Argue that, even with the conservative update rule, the count-min sketch never underesti-
mates the count.

(f) [7 points] Repeat part (c) with conservative updates (including the discussion). If the outcome seems
different, offer a plausible explanation
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