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CSE 421
Introduction to Algorithms

Winter 1999

The Network Flow Problem
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● How much stuff can flow from s to t?

The Network Flow Problem
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Net Flow: Formal Definition

Given:
A digraph G = (V,E)

Two vertices s,t in V
(source & sink)

A capacity c(u,v) ≥ 0
for each (u,v) ∈ E
(and c(u,v) = 0 for all non-
edges (u,v))

Find:
A flow function f: V x V → R s.t.,
for all u,v:

– f(u,v) ≤ c(u,v) [Capacity Constraint]

– f(u,v) = -f(v,u) [Skew Symmetry]

– if u ≠ s,t, f(u,V) = 0 [Flow Conservation]

Maximizing total flow |f| = f(s,V)

∑ ∑∈ ∈=
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Notation:
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f(s,u) = f(u,t) =  2
f(u,s) = f(t,u) = -2

Example: A Flow Function

s u t2/2 2/3

022),(),(),(),( =+−=+== ∑ ∈ tufsufvufVuf Vv

flow/capacity, not .66...
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● Not shown: f(u,v) if ≤ 0
● Note:  max flow ≥ 4 since

f is a flow function, with |f| = 4

Example: A Flow Function
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Max Flow via a Greedy Alg?

While there is an s → t path in G
Pick such a path, p
Find c, the min capacity of any edge in p
Subtract c from all capacities on p
Delete edges of capacity 0

● This does NOT always find a max flow:
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A Brief History of Flow

n = # of vertices
m= # of edges
U = Max capacity

Source: Goldberg & Rao,
FOCS ‘97
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Greed Revisited
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Residual Capacity

● The residual capacity (w.r.t. f) of (u,v) is
cf(u,v) = c(u,v) - f(u,v)

● e.g. cf(s,b)=7; cf(a,x) = 1; cf(x,a) = 3
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Residual Networks
& Augmenting Paths

● The residual network (w.r.t. f) is the
graph Gf = (V,Ef), where

Ef = { (u,v) | cf(u,v) > 0 }

● An augmenting path (w.r.t. f) is a simple
s → t path in Gf.
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A Residual Network
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An Augmenting Path
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Lemma 1

If f admits an augmenting path p, then f is
not maximal.

Proof: “obvious” -- augment along p by cp,
the min residual capacity of p’s edges.
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Augmenting A Flow
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Ford-Fulkerson Method

While Gf has an augmenting path,
augment

● Questions:
» Does it halt?
» Does it find a maximum flow?
» How fast?
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Cuts

● A partition S,T of V is a cut if s ∈ S, t ∈ T
● Capacity of cut S,T is ∑

∈
∈
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Lemma 2

● For any flow f and any cut S,T,
» the net flow across the cut equals the total

flow, i.e., |f| = f(S,T), and
» the net flow across the cut cannot exceed

the capacity of the cut, i.e. f(S,T) ≤ c(S,T)

● Corollary:
Max flow ≤ Min cut
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Cut Cap  = 3
Net Flow = 1

Cut Cap  = 2
Net Flow = 1
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Max Flow / Min Cut Theorem

For any flow f, the following are equivalent
 (1) |f| = c(S,T) for some cut S,T (a min cut)

(2) f is a maximum flow
(3) f admits no augmenting path

Proof:

(1) ⇒ (2): corollary to lemma 2
(2) ⇒ (3): lemma 1
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(3) ⇒ (1)

S = { u | ∃ an augmenting path from s to u }
T = V - S;  s ∈ S, t ∈ T
For any (u,v) in S × T, ∃ an augmenting path

from s to u, but not to v.

∴ (u,v) has 0 residual capacity:
(u,v) ∈ E ⇒ saturated f(u,v) = c(u,v)

(v,u) ∈ E ⇒ no flow f(u,v) = f(v,u) = 0

This is true for every edge crossing the cut, i.e.

s t

S   T

u v

=== ∑ ∑∈ ∈Su Tv vufTSff ),(),(||
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Corollaries & Facts

● If Ford-Fulkerson terminates, then it’s
found a max flow.

● It will terminate if c(e) integer or rational
(but may not if they’re irrational).

● However, may take exponential time,
even with integer capacities:
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Edmonds-Karp Algorithm

● Use a shortest augmenting path
(via Breadth First Search in residual graph)

● Time: O(n m2)
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BFS/Shortest Path Lemmas

Distance from s is never reduced by:
• Deleting an edge

proof: no new (hence no shorter) path created

• Adding an edge (u,v), provided v is nearer
than u
proof: BFS is unchanged, since v visited before
(u,v) examined
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Lemma 27.8
(Alternate Proof)

Let f be a flow, Gf the residual graph, and
p a shortest augmenting path.  Then no
vertex is closer to s after augmentation
along p.

Proof: Augmentation only deletes edges,
adds back edges
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Augmentation vs BFS
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Theorem 27.9

The Edmonds-Karp Algorithm performs
O(mn) flow augmentations

Proof:
{u,v} is critical on augmenting path p if it’s
closest to s having min residual capacity
won’t be critical again until farther from s
so each edge critical at most n times
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Corollary

● Edmonds-Karp runs in O(nm2)
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Flow Integrality Theorem

If all capacities are integers
» The max flow has an integer value
» Ford-Fulkerson method finds a max flow in

which f(u,v) is an integer for all edges (u,v)


