

A Brief History of Flow					
	#	year	discoverer(s)	bound	
	1	1951	Dantzir	$O(n^2mU)$	
	2	1955	Ford & Fulkerson	O(nmU)	
	3	1970	Dinitz Edmonds & Karp	O(nm ²)	
	4	1970	Dinitz	$O(n^2m)$	
	5	1972	Edmonds & Karp Dinitz	$O(m^2 \log U)$	
	6	1973	Dinitz Gabow	$O(nm \log U)$	
	7	1974	Karranov	$O(n^3)$	
	8	1977	Cherkassky	$O(n^3 \sqrt{m})$	
	9	1980	Galil & Naamad	$O(nm \log^2 n)$	
	10	1983	Sleator & Tarjan	O(nm log n)	
	11	1985	Goldberg & Tarjan	$O(nm \log(n^3/m))$	
	12	1987	Ahuja & Orlin	$O(nm + n^2 \log U)$	n = # of vertices
	13	1967	Ahuja et al.	$O(nm \log(n\sqrt{\log U}/(m+2)))$	m- # of edges
	14	1969	Cheriyan & Hagerup	$E(nm + n^2 \log^2 n)$	II = Max capacity
	15	1990	Cheriyan et al.	$O(n^3/\log n)$	0 = Max capacity
	16	1990	Alon	$O(nm + n^{8/2} \log n)$	
	17	1992	King et al.	$O(nm + n^{2+\epsilon})$	
	18	1993	Phillips & Westbrook	$O(nm(\log_{m/n} n + \log^{2+\epsilon} n))$	
	19	1994	King et al.	O(nmlog_(nlage) n)	
	20	1997	Goldberg & Rao	$O(m^{3/2} \log(n^2/m) \log U)$ $O(n^{2/3} m \log(n^2/m) \log U)$	Source: Goldberg & Rao,

Lemma 27.8 (Alternate Proof)

Let f be a flow, G_f the residual graph, and p a shortest augmenting path. Then no vertex is closer to s after augmentation along p.

Proof: Augmentation only deletes edges, adds back edges

CSE 421

Theorem 27.9

The Edmonds-Karp Algorithm performs O(mn) flow augmentations

Proof:

{u,v} is critical on augmenting path p if it's closest to s having min residual capacity won't be critical again until farther from s so each edge critical at most n times

CSE 421

Corollary

Edmonds-Karp runs in O(nm²)

CSE 421