CSE 421:
Introduction to Algorithms

Dynamic Programming

Dynamic Programming

Chapter 16

Today:
Example 1 - Licking Stamps
General Principles
Example 2 - Matrix-chain products

Licking Stamps

Given:
Large supply of 5¢, 4¢, and 1¢ stamps
An amount N

Problem: choose fewest stamps totaling N

How to Lick 27¢

#of5¢ #of4¢ #of1¢ Total
Stamps Stamps Stamps Number

5 0 2 7
4 1 3 8
3 3 0 6

Moral: Greed doesn’t pay

A Simple Algorithm

At most N stamps needed, etc.
fora=0, ..., N{
forb=0, ..., N{
forc=0,...,N{
if (5a+4b+c == N && a+b+c is new min)
{retain (a,b,c);}}}
output retained triple;

Time: O(N?)
(Not too hard to see some optimizations, but we're after bigger fish...)

5

Better Idea

Theorem: If last stamp licked in an
optimal solution has value v, then previous
stamps form an optimal solution for N-v.

Proof: if not, we could improve the
solution for N by using opt for N-v.

i=0

M(i) = min :%8:2 gil:l where M(N) = min number
+M(i-1) i1 of stamps totaling N¢




New ldea: Recursion

=g
o =g 50
+M(i-1) =1
27
P

22 23 26

17 18 2118 19 2221 22 25

Time: > 3N5

Another New ldea:
Avoid Recomputation

Tabulate values of solved subproblems
Top-down: “memoization”

Bottom up:
=0
fori=0,...,Ndo M) =min gﬁ%:ig =20
+M(i-1) i1
Time: O(N)

Finding How Many Stamps

7 9 10 11 12 13 14

8
2

1+Min(3,1,3) = 2

Finding Which Stamps:
Trace-Back

8 9 10 11 12 13 14

1+Min(3,1,3) =2

Complexity Note
O(N) is better than O(N3) or O(3N55)

But still exponential in input size
(log N bits)

(E.g., miserably slow if N is 64 bits.)

See “NP-Completeness” later

Elements of Dynamic
Programming

What feature did we use?
What should we look for to use again?

“Optimal Substructure”
Optimal solution contains optimal subproblems
“Repeated Subproblems”

The same subproblems arise in various ways




Matrix-chain Products %

Given: p,; X p; matrices A;, 1<i<n
Problem: Compute Aj*A,e ... *A

n

3 - * 3 Work=3*20%4

Matrix-chain Products

Given: p,; X p; matrices A;,, 1<i<n
Problem: Compute AjeA,e ... *A

n

In What Order?
Example: A«BeC, where:

Ais1x10 (A*B)y«C | A (B=*C)
H vt S et A A

Bis10x 2 1¥10*2 + 1210 1*10*10 + 10*2*10

Cis2x10 40 300

20
20

In general:

pxqtimesqxr

costs p*qg*r

4
13
Simple Algorithm

Just try all possible parenthesizations

How many are there?
PQ)=1

P = S o P(K)P(n - k)n>1

1rpn-2 §
Py = :QB';/ZE

Repeated Subproblems

All 5 Parenthesizations of Aj* A2 Az A,

Optimal Substructure:

Theorem: if the last multiply is
(A...A)* (A Ay, then A L Ajis
optimally parenthesized, as is A,;...A,.
Proof: Could improve if not.

Let M[i,j] = min ops to multiply A,...A,
o i=jO0
MIi1= iy (VI K+ MK+ 11+ D
i<j
Pi-1Pkb;) H -

An O(n3) Algorithm

/' Goal: M[i,j] = min ops to multiply A;... A,

forj:=1tondo s
M[j.j] = 0;
fori:=(j-1) downto 1 do
MIi,j] == ming,(P.gPp; +
M[i,K]+M[k+1,j]);




Example:

LA N pOfg A 2x3
L p1:1 Ay 3x1
p2_5 A 15
Ps =924 A, Bx1
2 pa=1




