CSE 421
Introduction to

Algorithms

Depth First Search and
Strongly Connected Components

Undirected T
Depth-First Search \'é
1
= Key Properties: @
1. No “cross-edges”; @
only tree- or back-edges e N
2. Before returning, DFS(v) /2%

visits all vertices reachable % .
from v via paths through &\Cf’
previously unvisited &’@)
vertices D)

An Application:

{ G has a cycle = DFS finds a back edge
O Clear.
O Why can't we have something like this?:

Undirected
Depth-First Search

= It's not just for trees

| orsty)
s {if v marked then return;
wee (MArK v; #v := ++count;
ecjge{for all edges (v,w) do DFS(w);
Mai n()
count := 0;
for all unmarked v do DFS(v); 2

Directed Depth First Search

= Algorithm: Unchanged

= Key Properties:
2. Unchanged
1'. Edge (v,w) is:

As{ Tree-edge if w unvisited
before | Back-edge if w visited, #w<#v, on stack
Cross-edge if w visited, #w<#v, not on stack

New
{ Forward-edge if w visited, #w>#v

Note: Cross edges only go “Right” to “Left” ,

Strongly Connected Components

= Defn: G is strongly connected if for all
u,v there is a (directed) path fromu to v
and from v to u.
[Equivalently:

there is a cycle through u and v.]

= Defn: a strongly connected component
of G is a maximal strongly connected
subgraph.

S ‘a0
b,

)]

[©

—® ©
@\ f '
o8
Usesfor SCC's

= Optimizing compilers need to find loops,
which are SCC'’s in the program flow
graph.

= If (u,v) means process u is waiting for
process v, SCC’'s show deadlocks.

Goal:

{ = Find all Strongly Connected
Components in linear time,
i.e., time O(n+e)

(Tarjan, 1972)

11

Note: collapsed
graphisaDAG 8

Two Simple SCC Algorithms

= u,v in same SCC iff there are
pathsu - v&v - u

= Transitive closure: O(n?)

= DFS from every u, v: O(ne) = O(n3)

Lemmal

Before returning, dfs(v) visits

— all unvisited vertices reachable from v

—only unvisited vertices reachable from v
All become descendants of v in the tree.
Proof:

— dfs follows all direct out-edges

— call dfs recursively at each

— by induction on path length, visits all

Definition

The root of an SCC is the first vertex in
it visited by DFS.

Equivalently, the root is the vertex in the
SCC with the smallest number.

13

Lemma?2

All members of an SCC are
descendants of its root.

Proof:
— all members are reachable from all others
—so, all are reachable from its root
— all are unvisited when root is visited
—s0, all are descendants of its root (Lemma 1)

14

Subgoal

= Can we identify some root?

= How about the root of the first SCC
completely explored by DFS?

= Key idea: no exit from first SCC
(first SCC is leftmost “leaf” in collapsed DAG)

15

\"
Definition "A

x is an exit from v (from v's subtree) if
— X is not a descendant of v, but

— X is the head of a (cross- or back-) edge
from a descendant of v (including v itself)

NOTE: #x <#v

Lemma3 iRAV

If v is not a root, then v has an exit.

Proof:
—letr be root of v's SCC
—ris a proper ancestor of v (Lemma 2)

—let x be the first vertex that is not a
descendantof vonapathv - r.

— X is an exit

Cor: If v has no exit, then v is a root.
NB: converse not true; some roots do have exits 18

Lemma4

If r is the first root from which dfs
returns, then r has no exit

| Proof:

— Suppose X is an exit

—let z be root of x's SCC

—r not reachable from z, else in same SCC
—#z < #x (z ancestor of x; Lemma 2)

—#x <#r (xis an exit fromr)

—#z <#r,no z - r path, so return from z first
— Contradiction

19

21

Lemma3

(If v is not a root, then v has an exit .

Proot
—letr be root of v's SCC

—ris a proper ancestor of v (Lemma 2)

—let x be the first vertex that is not a
descendantof vonapathv - r.

—xis an exit
Cor: If vhas no exiii, then v is a root.

I Proof:

How to Find EXits (in 1t component)

= All exits x from v have #x < #v
= Suffices to find any of them, e.g. min #
= Defn:
LOW(v) = min({ #x | x an exit from v} O {#v})
= Calculate inductively:
LOW(v) = min of:

Xp 04— ALY
i Wi gWo g Wy
— { LOW(w) | w a child of v } Y

— {#x] (v,x) is a back- or cross-edge }

X1%

Finding Other Components

= Key idea: No exit from
—1stSCC
—2nd SCC, except maybe to 1st
— 31 SCC, except maybe to 1st and/or 2nd

22

Lemma4

If ris the Th‘st;root from which dfs
returns, then r has no exit
except possibly
— Suppose X is an exit to the first (k-1)
—let z be root of X’s SCC ~ [components
—r not reachable from z, else in same SCC
—#z < #x (z ancestor of x; Lemma 2)

—#x <#r (xis an exit fromr)

—#z <#r,no z - r path, so return from z first

kth
How to Find EXits (in 1¢'‘component)

= All exits x from v have #x < #v
= Suffices to find any of them, e.g. min #
= Defn:
LOW(v) = min({ #x | x an exit from v } O {#v})
= Calculate inductively:
LOW(v) = min of:
—#v
— { LOW(w) | w a child of v }
— {#x] (v,x) is a back- or cross-edge

and x not in first
(k-1) components

25

SCC Algorithm #tv = DFS number
v.low = LOW(v)
V.ScC = component #
SCC(v)
#v = vertex_number++; v.low = #v; push(v)
for all edges (v,w)
if #w == 0 then
SCC(w); v.low = min(v.low, w.low) // tree edge
else if #w < #v && w.scc == 0 then
v.low = min(v.low, #w) // cross- or back-edge
if #v = v.low then /1 v is root of new scc
SCCH++;
repeat
w = pop(); w.scc = scc#; // mark SCC members
until w==v %

Complexity

= Look at every edge once

= Look at every vertex (except via in-
edge) at most once

= Time = O(n+e)

28

