
1

1

CSE 421
Introduction to Algorithms

Depth First Search and
Strongly Connected Components

2

Undirected
Depth-First Search

■ It’s not just for trees

DFS(v)

if v marked then return;

mark v; #v := ++count;

for all edges (v,w) do DFS(w);

Main()

count := 0;

for all unmarked v do DFS(v);

back
edge

tree
edge

3

Undirected
Depth-First Search

■ Key Properties:
1. No “cross-edges”;

only tree- or back-edges

2. Before returning, DFS(v)
visits all vertices reachable
from v via paths through
previously unvisited
vertices

4

■ Algorithm: Unchanged
■ Key Properties:

2. Unchanged
1’. Edge (v,w) is:

Tree-edge if w unvisited
Back-edge if w visited, #w<#v, on stack
Cross-edge if w visited, #w<#v, not on stack
Forward-edge if w visited, #w>#v

Note: Cross edges only go “Right” to “Left”

Directed Depth First Search

As
before

New

5

An Application:

G has a cycle ⇔ DFS finds a back edge
⇐ Clear.
 ⇒ Why can’t we have something like this?:

6

Strongly Connected Components

■ Defn: G is strongly connected if for all
u,v there is a (directed) path from u to v
and from v to u.
[Equivalently:

there is a cycle through u and v.]
■ Defn: a strongly connected component

of G is a maximal strongly connected
subgraph.

2

7

1

2
10

9

8

3

4

5

6

7

11
12

13

8

1

2
10

9

8

3

4

5

6

7

11
12

13

Note: collapsed
graph is a DAG

9

Uses for SCC’s

■ Optimizing compilers need to find loops,
which are SCC’s in the program flow
graph.

■ If (u,v) means process u is waiting for
process v, SCC’s show deadlocks.

10

Two Simple SCC Algorithms

■ u,v in same SCC iff there are
paths u → v & v → u

■ Transitive closure: O(n3)

■ DFS from every u, v: O(ne) = O(n3)

11

Goal:

■ Find all Strongly Connected
Components in linear time,
i.e., time O(n+e)

(Tarjan, 1972)

12

Lemma 1

Before returning, dfs(v) visits
– all unvisited vertices reachable from v
– only unvisited vertices reachable from v

All become descendants of v in the tree.
Proof:

– dfs follows all direct out-edges
– call dfs recursively at each
– by induction on path length, visits all

3

13

Definition

The root of an SCC is the first vertex in
it visited by DFS.

Equivalently, the root is the vertex in the
SCC with the smallest number.

14

Lemma 2

All members of an SCC are
descendants of its root.

Proof:
– all members are reachable from all others
– so, all are reachable from its root
– all are unvisited when root is visited
– so, all are descendants of its root (Lemma 1)

15

Subgoal

■ Can we identify some root?
■ How about the root of the first SCC

completely explored by DFS?

■ Key idea: no exit from first SCC
(first SCC is leftmost “leaf” in collapsed DAG)

16

Definition

x is an exit from v (from v’s subtree) if
– x is not a descendant of v, but
– x is the head of a (cross- or back-) edge

from a descendant of v (including v itself)

NOTE: #x < #v

v
x

17

1

2
10

9

8

3

4

5

6

7

11
12

13

root exits
1 1 -
2 2 -
3 3 -
4, 5 3 3
6 3 3, 5
7 3 5
8, 9 3 7
10 10 2, 8
11, 12 10 10
13 13 -

18

Lemma 3

If v is not a root, then v has an exit.
Proof:

– let r be root of v’s SCC
– r is a proper ancestor of v (Lemma 2)
– let x be the first vertex that is not a

descendant of v on a path v → r .
– x is an exit

Cor: If v has no exit, then v is a root.
NB: converse not true; some roots do have exits

r
v

x

4

19

Lemma 4

If r is the first root from which dfs
returns, then r has no exit

Proof:
– Suppose x is an exit
– let z be root of x’s SCC
– r not reachable from z, else in same SCC
– #z ≤ #x (z ancestor of x; Lemma 2)
– #x < #r (x is an exit from r)
– #z < #r, no z → r path, so return from z first
– Contradiction

r
x

z ?

20

■ All exits x from v have #x < #v
■ Suffices to find any of them, e.g. min #
■ Defn:

LOW(v) = min({ #x | x an exit from v} ∪ {#v})
■ Calculate inductively:

LOW(v) = min of:
– #v
– { LOW(w) | w a child of v }

– { #x | (v,x) is a back- or cross-edge }

How to Find Exits (in 1st component)

w1 w2 w3

x1

x2
v

21

1

2
10

9

8

3

4

5

6

7

11
12

13

root exits LOW
1 1 -
2 2 -
3 3 - 3
4, 5 3 3 3
6 3 3, 5 3
7 3 5 5
8, 9 3 7 7
10 10 2, 8
11, 12 10 10
13 13 -

22

Finding Other Components

■ Key idea: No exit from
– 1st SCC
– 2nd SCC, except maybe to 1st

– 3rd SCC, except maybe to 1st and/or 2nd

– ...

23

Lemma 3’

If v is not a root, then v has an exit .
Proof:

– let r be root of v’s SCC
– r is a proper ancestor of v (Lemma 2)
– let x be the first vertex that is not a

descendant of v on a path v → r .
– x is an exit

Cor: If v has no exit , then v is a root.

v

x

r

in v’s SCC

in v’s SCC

in v’s SCC 24

If r is the first root from which dfs
returns, then r has no exit

Proof:
– Suppose x is an exit
– let z be root of x’s SCC
– r not reachable from z, else in same SCC
– #z ≤ #x (z ancestor of x; Lemma 2)
– #x < #r (x is an exit from r)
– #z < #r, no z → r path, so return from z first
– Contradiction

except possibly
to the first (k-1)
components

Lemma 4’
kth

i.e., x in first (k-1)

r
x

z ?

5

25

How to Find Exits (in 1st component)

■ All exits x from v have #x < #v
■ Suffices to find any of them, e.g. min #
■ Defn:

LOW(v) = min({ #x | x an exit from v } ∪ {#v})
■ Calculate inductively:

LOW(v) = min of:
– #v
– { LOW(w) | w a child of v }

– { #x | (v,x) is a back- or cross-edge }

kth

and x not in first
(k-1) components

26

SCC Algorithm

SCC(v)
#v = vertex_number++; v.low = #v; push(v)
for all edges (v,w)

if #w == 0 then
SCC(w); v.low = min(v.low, w.low) // tree edge

else if #w < #v && w.scc == 0 then
v.low = min(v.low, #w) // cross- or back-edge

if #v = v.low then // v is root of new scc
scc#++;
repeat

w = pop(); w.scc = scc#; // mark SCC members
until w==v

#v = DFS number
v.low = LOW(v)
v.scc = component #

27

1

2
10

9

8

3

4

5

6

7

11
12

13

root exits LOW
1 1 - 1
2 2 - 2
3 3 - 3
4, 5 3 3 3
6 3 3, 5 3
7 3 5 5
8, 9 3 7 7
10 10 2, 8 10
11, 12 10 10 10
13 13 - 13

28

Complexity

■ Look at every edge once
■ Look at every vertex (except via in-

edge) at most once

■ Time = O(n+e)

