
CSE 421 Winter 2026: Section 2

January 15, 2026

Instructions: This section worksheet is designed to assist you in working through some example
problems and developing your basics. You are encouraged to collaborate on the problems on this
section as well as use the course’s generative AI.

1 Dijkstra’s algorithm practice

Practice computing distances for this graph, starting from 𝑠, by implementing Dijkstra’s algorithm by
hand. Compute the tree of shortest paths from 𝑠. What is the order in which the vertices are processed?

Assume that when the algorithm is deciding which vertex to process when there are multiple at the same
distance, it processes alphabetically first.

𝑠

𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

𝑡

4

2

3

55

9

2

77

1

3

5

9
6

2 Step-by-step algorithmic walkthrough

A towing company needs to prepare the highway for a snowstorm. The problem input is a sorted array 𝐴

of 𝑛 integers, representing marked mile markers on the highway where we believe someone will need a
tow. Find an efficient algorithmwhich computes where to park tow-trucks such that at least one tow-truck
is ≤ 5 miles from every marked location. Compute a set of locations for truck placement that is minimal
(there may be multiple solutions with the same number of trucks; we just want one solution).

Instructions: You are free to solve this problem however you like — the following “step-by-step” proce-
dure illustrates our general technique for thinking about algorithms. Hopefully, the walkthrough will be
helpful for you!

1

1. What is the problemasking? It is hard to solve a problem if you don’t knowwhat you are supposed
to do. Reread the problem slowly, highlighting key parameters, requirements, and the format of the
“return type” that the answer needs to be provided in. Ask yourself the following questions:

• Are they are technical terms in the problem that you don’t understand?

• What is the input type? (ex., Array, Graph (directed/undirected/weighted), Integer, something
else)?

• What is the output type? Do I need to keep track of decisions I make (ex. assignments, weights,
values, etc.) as I run the algorithm?

• For a word problem, can you extract the core algorithmic question?

2. What are some good examples? Come up with some examples in an effort to ensure that you
truly understand the problem. Generate a few sample instances and calculate the optimal solution.

Did you notice any patterns while coming up with the solution? If so, what were they, and can those
“patterns” be expressed algorithmically? If so, what properties might we need to prove? At this
stage, the goal is to just come up with a few (2-3) examples, but it is important to keep an eye on the
goal.

In terms of examples, our suggestion is to not focus on base or edge cases. Rather, we want to
understand the general behavior of the algorithm. Come up with examples that are decently large
(𝑛 ≈ 5 − 10) and are sufficiently different. For example, if the problem is described by a graph, make
sure that at least one example is non-planar.

3. What is a baseline? In a time-constrained setting (ex., interview or exam), it is good to come up
with a “baseline” or “brute-force” algorithm. It may not be optimal, but it can help give you a baseline
to compare any future improvement against.

4. What problems does this remind me of? Since it is only the second week of the course, our
collection of algorithmic techniques is small. By the end of the course, you will know quite a few
different methods, so it will be important to garner an intuition about the problems that eachmethod
is good for. A great starting point is identifying all the problems you have seen that are similar. Try
thinking through the following questions:

• Does this remind me of any prior problems? What techniques did we use there?

• Does the problem look like a standard algorithm when turned on its head? For example, do
I need to create a graph or adjust the data and then run a standard algorithm on the new
graph/data?

2

• Is there some structure to the input? For example, is it 1-dimensional (like this problem!)?

• Is there some structure to the output? If we need to make multiple selections or decisions, can
we make them greedily? In this case, greedy means that once a decision is made, we never have
to go back and revisit it. In greedy algorithms, we only make decisions when we are certain
(provably) that they are optimal.

For today, we will be using a greedy algorithm. Come up with a few plausible ideas for deciding
where to place the tow-trucks greedily.

5. Write an algorithm. Try running your algorithms against your examples. Did something click?
If one of your algorithms seems to be working, construct an example problem that bucks your al-
gorithm – meaning make sure every path through your example is explored. If you have an “if”
argument in your algorithm, make sure there exist examples that apply to both sides of the “if”
statement. If you cannot come up with such an example, perhaps the “if” statement wasn’t needed.

6. Prove that your algorithm is correct. As we explore more algorithms, we will also come up with
more techniques for proving correctness. For this problem, there are a couple of equivalent proofs of
correctness. Anywill do; come upwith the one that feels most natural for you to write. Remember to
prove the following two requirements: (1) your algorithm outputs a valid solution; in this case, a set
of tow-truck locations covering all marked locations. And (2) that the number of parking locations
is minimal.

3 Additional practice algorithms

3.1 Commuting across Seattle

Little Johnny is trying to commute from locations 𝑠 to 𝑡 in Seattle. He has an electric scooter and a coupon
for one free ride on the 1-Line metro. He has modeled Seattle as a weighted directed graph𝐺 = (𝑉 , 𝐸)with
𝑤 ∶ 𝐸 → ℝ≥0 representing the electricity cost on his electric scooter. On the graph, assume 𝑣1, 𝑣2, … , 𝑣𝑘

represents the 1-Line metro stations.

Construct an algorithm that finds the cheapest path for Little Johnny, keeping in mind he can ride the
1-Line metro at most once.

Hint:Constructagraph𝐺
′
with2𝑛+𝑘vertices(therecouldbealternateconstructionsaswell).

3.1.1 Back and cross edges

In lecture, we saw that an undirected connected graph has only back edges and tree edges (no cross edges)
with respect to any DFS tree.

3

For this problem, show that an undirected connected graph has only cross edges and tree edges (no
back edges) with respect to any BFS tree.

1. First, come up with a graph and a choice of source 𝑠 for which running BFS yields both cross and
tree edges.

2. Second, come up with a proof that there are no back edges with respect to BFS trees.

3.2 Interval covering

The input is a set of intervals [𝑎𝑖, 𝑏𝑖] for 𝑖 = 1, … , 𝑛 and 𝑎𝑖 < 𝑏𝑖. The output is a minimal set of points
𝑥1, … , 𝑥𝑘 such that for every interval [𝑎𝑖, 𝑏𝑖], there exists some point 𝑥𝑗 ∈ [𝑎𝑖, 𝑏𝑖].

1. Before solving this problem, come up with at least two “word problems” that are morally equivalent
to this bare-bones mathematical problem. This is a good practice for ensuring that you understand
what the mathematical question is asking.

2. Show how this problem is a generalization of the “tow-truck” problem.

3. Briefly explain how to generalize your solution to the “tow-truck” problem to satisfy this problem.

3.3 BFS layers

Let 𝐺 = (𝑉 , 𝐸) be an undirected, unweighted graph, and let 𝑠 ∈ 𝑉 be a fixed source vertex. Run the
Breadth-First Search (BFS) algorithm starting from 𝑠. For each integer 𝑖 ≥ 0, define the BFS layer

𝐿𝑖 = {𝑣 ∈ 𝑉 ∶ dist(𝑠, 𝑣) = 𝑖},

where dist(𝑠, 𝑣) denotes the length of a shortest path from 𝑠 to 𝑣.

1. Prove that every path in 𝐺 from 𝑠 to a vertex 𝑣 ∈ 𝐿𝑑 must contain at least one vertex from each layer
𝐿0, 𝐿1, … , 𝐿𝑑 .

2. Prove that every path in 𝐺 of length 𝑑 from 𝑠 to a vertex 𝑣 ∈ 𝐿𝑑 contains exactly one vertex from
each layer 𝐿0, 𝐿1, … , 𝐿𝑑 .

4

4 Solutions

4.1 Dijkstra’s algorithm practice

The vertices are the following distances:

𝑠 = 0, 𝑎 = 4, 𝑏 = 2, 𝑐 = 7, 𝑑 = 9, 𝑒 = 9, 𝑓 = 10, 𝑡 = 12.

The visit order is 𝑠, 𝑏, 𝑎, 𝑐, 𝑑, 𝑒, 𝑓 , 𝑡.

𝑠

𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

𝑡

4

2

3

55

9

2

77

1

3

5

9
6

4.2 Step-by-step algorithmic walkthrough

1. What is the problem asking? Here, “satisfying a marked location” means “place a truck at most 5
(miles) from the location.” The input type is a list of numbers. The return type is a list of numbers.
A core algorithmic question might be: Find a minimal set 𝑃 such that

∀ 𝑖 ∈ [𝑛], ∃ 𝑝 ∈ 𝑃 s.t. |𝐴[𝑖] − 𝑝| ≤ 5.

2. Examples. There are multiple examples and outputs you can pick for the best solution. Here are
some we thought of:

• Input: [0,1,2,3,4,5,6,7,8,9,10,11,12] Output: [3,7]

• Input: [0,6,7,8,9,13] Output: [0,10]

• Input: [0,1,2,3, 100,101,102,103] Output: [1.5,101.5]

3. Baseline. Place a tow-truck at every marked location. A non-optimal algorithm, but it runs in 𝑂(1)

time.

4. Similar problems? The one-dimensional nature suggests a greedy algorithmmight be good. Partic-
ularly because the choice of where to place a tow-truck to satisfy the first few locations will probably

5

have little to no relevance on where to place a tow-truck to satisfy later solutions.

This reminds us of interval scheduling problems.

5. Algorithm. Let 𝐴 be the sorted input with 𝐴[1] < 𝐴[2] < … < 𝐴[𝑛]. Initialize 𝑃 ← {}, which will be
the set of tow-truck locations, and let 𝑗 ← 1. Add a tow-truck at 𝑃 ← 𝑃 ∪{𝐴[𝑗]+5} and then linearly
traverse the array 𝐴 to find the first index 𝑗 ′ such that 𝐴[𝑗 ′] > 𝐴[𝑗] + 10. Then redefine 𝑗 ← 𝑗

′ and
repeat until the entire array is parsed.

Runtime. The algorithm parses the array 𝐴 linearly and makes one pass through the array with
decisions at each index taking 𝑂(1) time. This yields an 𝑂(𝑛) runtime.

6. Correctness. We employ a “greedy-stays-ahead” strategy for our proof. Let OPT be the locations
selected by any optimal strategy (sorted in increasing order) and let ALG be the locations selected
by our greedy strategy (also sorted in increasing order). We prove by induction that the number of
marked locations covered by the first 𝑖 elements of OPT is at most that covered by 𝑖 elements of ALG.

For a base case of 𝑖 = 1, notice that by placing the first tow-truck at 𝐴[1] + 5 we cover location 1
and, since the array is sorted, the maximal number of future locations. For induction, let 𝑗 be the
first index not covered by the first 𝑖 elements of ALG. By induction, it is not covered by the first 𝑖
elements of OPT, and every prior location is covered by both strategies. Because ALG includes the
𝑖 + 1-th tow-truck at 𝐴[𝑗] + 5, we cover the 𝑗-th location and at least as many locations as OPT, as
every novel location covered by the 𝑖 + 1-th truck of OPT is also covered by ALG. This proves the
minimality of ALG by induction. Observe that this argument also proves feasibility.

4.3 Practice algorithms

4.3.1 Commuting across Seattle

Algorithm. We reduce to a shortest-path computation on a layered graph. Construct a directed graph
𝐺
′
= (𝑉

′
, 𝐸

′
) with three layers:

𝑉
′
= {(𝑣, 0) ∶ 𝑣 ∈ 𝑉 } ∪ {(𝑣𝑖, 1/2) ∶ 𝑖 ∈ {1, … , 𝑘}} ∪ {(𝑣, 1) ∶ 𝑣 ∈ 𝑉 },

where layer 0means “metro not yet used”, layer 1/2means “metro in use” and layer 1means “metro already
used”. Then, add the following edges.

1. For every original edge (𝑢, 𝑣) ∈ 𝐸, add edges (𝑢, 0) → (𝑣, 0) and (𝑢, 1) → (𝑣, 1), each with weight
𝑤(𝑢, 𝑣). (Scooter travel is always allowed.)

6

2. For each 𝑖 ∈ {1, … , 𝑘 − 1}, add edges (𝑣𝑖, 1/2) ↔ (𝑣𝑖+1, 1/2) (in both directions) of weight 0. (The
metro is free).

3. For 𝑖 ∈ {1, … , 𝑘}, add edges (𝑣𝑖, 0) → (𝑣𝑖, 1/2) and add (𝑣𝑖, 1/2) → (𝑣𝑖, 1) of weight 0. (This represents
getting on or getting off the metro.)

Now run Dijkstra’s algorithm from (𝑠, 0) in 𝐺
′. The answer is

min

{

dist𝐺′((𝑠, 0), (𝑡, 0)), dist𝐺′((𝑠, 0), (𝑡, 1))

}

,

and we recover a corresponding path in 𝐺 by projecting away the layer labels with travel between layer
1/2 representing metro travel.

Runtime. The graph 𝐺
′ has 2𝑛 + 𝑘 vertices. It has 2𝑚 scooter edges and 𝑂(𝑘) metro edges, so |𝐸

′
| =

𝑂(𝑚 + 𝑘). Running Dijkstra’s algorithm takes 𝑂(|𝐸
′
| log |𝑉

′
|) = 𝑂((𝑚 + 𝑘) log 𝑛) time.

Correctness. We establish a one-to-one correspondence between valid 𝑠-to-𝑡 routes in the original prob-
lem and paths in 𝐺

′ from (𝑠, 0) to either (𝑡, 0) or (𝑡, 1), preserving total cost.
Given any valid route in 𝐺 in which Johnny rides the metro at most once, map scooter moves (𝑢 → 𝑣)

to the corresponding edge within the current layer (either (𝑢, 0) → (𝑣, 0) or (𝑢, 1) → (𝑣, 1)) with the same
cost 𝑤(𝑢, 𝑣). If the route ever uses the metro, map the first metro step to an edge from layer 0 to layer 1/2
of weight 0, and map all subsequent metro steps with layer-1/2 metro edges of weight 0 followed by an
edge from layer 1/2 to layer 1/ for getting off the metro. This produces a path in 𝐺

′ whose total weight
equals the scooter electricity cost of the route (metro contributes 0).

Conversely, any path in 𝐺
′ starting at (𝑠, 0) can switch from layer 0 to layer 1 at most once (since there

are no edges deceasing in layer). Therefore, projecting the path to 𝐺 yields a route that uses the metro at
most once. Scooter edges contribute exactly their original weights, and metro edges contribute 0, so the
total weight of the path equals the total cost of the route.

Thus, minimizing route cost in the original problem is equivalent to finding a shortest path in 𝐺
′ from

(𝑠, 0) to (𝑡, 0) or (𝑡, 1), as it is not required that Johnny takes the metro. Dijkstra’s algorithm returns such
a shortest path, so the algorithm outputs the cheapest valid route.

4.3.2 Back and cross edges

1. Take the 4-cycle (a square) with vertices {𝑠, 𝑎, 𝑏, 𝑐} and edges

{(𝑠, 𝑎), (𝑎, 𝑏), (𝑏, 𝑐), (𝑐, 𝑠)}.

Run BFS from 𝑠. One possible BFS tree chooses tree edges (𝑠, 𝑎) and (𝑠, 𝑐) (discovering 𝑎 and 𝑐 at
distance 1), and then discovers 𝑏 from 𝑎 using tree edge (𝑎, 𝑏). Now the edge (𝑏, 𝑐) is a non-tree

7

edge. Neither 𝑏 is an ancestor of 𝑐 nor 𝑐 an ancestor of 𝑏 in the BFS tree, so (𝑏, 𝑐) is a cross edge.
Thus, BFS can produce both tree edges and cross edges.

2. Let dist(𝑠, 𝑣) denote the shortest-path distance in the unweighted graph. BFS ensures that for every
vertex 𝑣, its depth in the BFS tree equals dist(𝑠, 𝑣). By triangle inequality, for any edge {𝑢, 𝑣} in an
undirected unweighted graph, |dist(𝑠, 𝑢) − dist(𝑠, 𝑣)| ≤ 1.

Suppose for contradiction that {𝑢, 𝑣} is a back edge, where (wlog) 𝑣 is a strict ancestor of 𝑢 in the BFS
tree. Let the BFS-tree depth of a vertex 𝑥 be 𝓁(𝑥). Because BFS-tree depth equals shortest distance,
𝓁(𝑥) = dist(𝑠, 𝑥) for all 𝑥 . If 𝑣 is a strict ancestor of 𝑢, then by being a back edge, the tree path from
𝑣 down to 𝑢 has length at least 2, so 𝓁(𝑢) ≥ 𝓁(𝑣) + 2. This contradicts the triangle inequality, and so
no back edge can exist.

4.3.3 Interval covering

1. Some other ideas could be appointment slots that need to be covered by doctors or security camera
placement. The general theme is “covering”.

2. This problem is conceptually similar to the tow-truck problem. For each location 𝐴[𝑖], construct
interval [𝑎𝑖, 𝑏𝑖] = [𝐴[𝑖] − 5, 𝐴[𝑖] + 5]. Observe that covering the interval is equivalent to a valid
tow-truck placement.

3. Let’s sort the intervals by increasing end-time 𝑏𝑖. We now include a new point at the very end of the
first uncovered interval. The prior proof can be lightly adjusted to fit this general problem. Observe
that the runtime does change, however as sorting requires Θ(𝑛 log 𝑛) time.

4.3.4 BFS Layers

We rely on the fact that 𝑣 ∈ 𝐿𝑖 iff dist(𝑠, 𝑣) = 𝑖. On the path 𝑠 to 𝑣 ∈ 𝐿𝑑 , every distance must be covered since
the distance from 𝑠 of adjacent vertices differs by at most 1 (by the triangle inequality). By the equivalence
of distance and layer index, at least one vertex from each layer must be included on the path. For the
second direction, since the path has length 𝑑, by the pigeonhole principle, exactly one vertex from each
layer must exist.

8

	Dijkstra's algorithm practice
	Step-by-step algorithmic walkthrough
	Additional practice algorithms
	Commuting across Seattle
	Back and cross edges

	Interval covering
	BFS layers

	Solutions
	Dijkstra's algorithm practice
	Step-by-step algorithmic walkthrough
	Practice algorithms
	Commuting across Seattle
	Back and cross edges
	Interval covering
	BFS Layers

