
CSE 421 Winter 2026: Problems

Instructions: Solutions should be legibly handwritten or typeset (ideally in LATEX). Mathematically
rigorous solutions are expected for all problems unless explicitly stated. You are encouraged to collab-
orate on problems in small teams, but everyone must individually submit solutions. Use of generative
AI for assistance on homework needs to adhere to the AI policy found on the course webpage. Addi-
tionally, solutions for the problems may be found online or in textbooks—but do not use them.

For grading purposes, on each problem, list the names of your collaborators. Additionally, for
each problem, if used, describe how you used generative AI to assist you. Note that each problem
will be assigned an individual Gradescope assignment.

All problems are worth 10 points. Problems numbered < 50 are general problems. Problems
numbered ≥ 50 are challenge problems.

If a runtime is not specified, you are expected to come up with the best runtime possible. We will
assume graphs have 𝑛 vertices and 𝑚 edges by convention.

Due Date Problems
Fri Jan 16th 6:00 pm 1-3, 51
Fri Jan 23rd 6:00 pm 4-6, 52
Fri Jan 30th 6:00 pm 7-9, 53
Fri Feb 6th 6:00 pm 10, 54
Fri Feb 13th 6:00 pm 11-13, 55
Fri Feb 20th 6:00 pm 14-16, 56
Fri Feb 27th 6:00 pm 17-19, 57
Fri Mar 6th 6:00 pm 20-22, 58
Fri Mar 13th 6:00 pm 23-25, 59

Grading Your course grade will be calculated using the following formula:

Grade = 0.56 ⋅ 𝑔 + 0.04 ⋅ 𝑐 + 0.15 ⋅ 𝑚 + 0.25 ⋅ 𝑓

where 𝑔 =

1

220

⋅ [sum of best 22 general problems] ,

𝑐 =

1

70

⋅ [sum of best 7 challenge problems] ,

𝑚 = [midterm score] , and 𝑓 [final score] .

We may apply a curve of the form 𝑥 ↦
log(1+𝜅𝑥)

log(1+𝜅)
to exam scores with 𝜅 ≈ 2. A grade of ≥ 0.92 guarantees

a 4.0. A grade of ≥ 0.75 guarantees at least a 3.0.
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Part I

General problems

1 Big O notation

1. [5 points] Prove or disprove the following statement: There existmonotonically increasing functions
𝑓 , 𝑔 ∶ ℕ → ℕ such that 𝑓 is not 𝑂(𝑔) and 𝑔 is not 𝑂(𝑓 ). If it is true, give an example. If it is false,
prove that no such functions exist. For partial credit, you can find functions 𝑓 and 𝑔 that are not
monotonically increasing.

2. [5 points] Let 𝑓1, 𝑓2, … , 𝑓𝑘 ∶ ℕ → ℕ be a set of functions. Show there exists a function 𝑔 ∶ ℕ → ℕ

with the following properties:

(a) 𝑓𝑖 is 𝑂(𝑔) for each 𝑖 = 1, … , 𝑘.

(b) For any function 𝑔
′
∶ ℕ → ℕ such that 𝑓𝑖 is 𝑂(𝑔

′
) for each 𝑖 = 1, … , 𝑘, it follows that 𝑔 is

𝑂(𝑔
′
).

In other words, there exists an asymptotic least upper bound for any finite collection of functions.

2 Tree induction

Given a connected tree 𝑇 with 𝑛 ≥ 2 vertices, suppose each vertex of the tree is marked with either “odd”
or “even” with an even number of vertices marked as “odd”. Prove there exists a subset 𝐹 of the edges of 𝑇
such that each “odd” marked vertex is adjacent to an odd number of edges in 𝐹 and every “even” marked
vertex is adjacent to an even number of edges in 𝐹 . In the example below, the dashed edges would form a
valid 𝐹 .

Hint: For a proof by induction, you can first prove the statement for all graphs of 𝑛 = 2 vertices. Then,
for the inductive step, when trying to prove the statement for a graph of 𝑛 vertices, you can assume the
statement is true for all graphs of < 𝑛 vertices.
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3 Back edges

ADFS tree is the tree constructed by running the DFS algorithm and recording which edges are used in the
search. We define, for this problem1, a back edge is any edge of the original graph from a vertex to its ancestor
in the tree (including itself and its parent). Prove that if a directed connected graph has a back edge with
respect to any DFS tree, then it has a directed cycle. Second, prove that every directed cycle in a directed
graph must include at least one back edge with respect to any DFS tree.

4 Bug classification

An entomologist has discovered a new collection of bugs. However, she notices that if two bugs are placed
in a terrarium together, they either are hostile to each other or not. She hypothesises that she has actually
discovered two species that are visually indistinguishable but are docile with other members of the same
species and hostile to members of the other species.

Without loss of generality, they have decided that Bug 1 is of Species A. Her graduate students have
placed various pairs of bugs (𝑥𝑖, 𝑦𝑖) in the terrarium and recorded their interaction as either hostile or docile.

Given a list of 𝑚 data points (𝑥𝑖, 𝑦𝑖, hostile/docile) consisting of 𝑛 bugs, construct an algorithm which
outputs either:

1. An assignment of each bug 1…𝑛 as either species A, species B, or “cannot determine”. The “cannot
determine” label should be given if we cannot definitively mark the Bug as species A or B.

2. An output of "hypothesis false" if the collected data is inconsistent with the hypothesis.

Additionally, prove the runtime and correctness of your algorithm.

Note: The hypothesis could be proven false, even if some bug’s species cannot be concretely determined.

(Optional): Let’s say we decided to avoid the “cannot determine” label altogether, and instead consider
labels that assign only “species A” or “species B” to each bug. Now, assuming the hypothesis is true, we
are interested in labelings that are not demonstrably incorrect (i.e., labelings that do not directly contradict
the data). Let’s refer to these as consistent labelings. Modify your algorithm so that, when it doesn’t output
“hypothesis false”, it outputs the number of consistent labelings.

5 Graph disconnector

Suppose an undirected graph 𝐺 = (𝑉 , 𝐸) with 𝑛 = ‖𝑉 ‖, 𝑚 = ‖𝐸‖ has two vertices 𝑠 and 𝑡 that are more
than > 𝑛/2 apart (i.e., the shortest distance from 𝑠 to 𝑡 is strictly more than half the number of vertices

1The literature, including the textbooks for this course, tends to vary in its definition of a back edge. Some literature will call
a self-loop from 𝑣 → 𝑣 a back edge. Some will not. Some literature will distinguish this case from other ancestors by referring to
any edge to a parent or further back as a proper ancestor. I, too, often confuse the definitions. We will attempt to make it clear in
our problem statements, like so.
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in the graph). Prove that there is some third vertex 𝑣 so that if you remove 𝑣, the vertices 𝑠 and 𝑡 are now
disconnected.

Using your proof as inspiration, modify an algorithm you have seen from class to construct an algorithm
for finding such a vertex 𝑣. State the runtime of your algorithm and use your proof to argue correctness.

Hint: Let 𝓁 be the distance between 𝑠 and 𝑡. First, argue that any path from 𝑠 to 𝑡 contains at least one
vertex at each of the distances 0, 1, 2, … , 𝓁 from 𝑠.

6 Shortest paths with multiple goals

A bakery needs to procure 𝑘 distinct ingredients for the day’s breadmaking. The ingredients are available
at various stores in town, with each store pricing the items differently. Due to refrigeration constraints,
the bakery needs to procure the items in order: first item 1, then item 2, . . . , then item 𝑘.

The bakery models the problem as a directed graph 𝐺 = (𝑉 , 𝐸) with non-negative weights 𝑤 ∶ 𝐸 → ℝ≥0

and a matrix 𝑓 ∶ 𝑉 × [𝑘] → ℝ with 𝑓 (𝑣, 𝑖) describing the cost of buying item 𝑖 at vertex 𝑣. The weight of
each edge 𝑢 → 𝑣 describes the cost of driving from 𝑢 to 𝑣. Additionally, if the item 𝑖 is unavailable at vertex
𝑣, then 𝑓 (𝑣, 𝑖) = ∞.

The bakery starts their procurement truck at vertex 𝑠 and their procurement truck should return to 𝑠 after
retrieving all 𝑘 items.

Give an algorithm along with its proof of runtime and correctness that finds the minimal cost route that
retrieves all 𝑘 items. Your algorithm should output a sequence of edges traversed and items bought. For
full credit on this problem, you should produce an algorithm with an asymptotic runtime2 of 𝑘𝑚 log(𝑘𝑛)

or better! Assume the input is the graph 𝐺 expressed as an adjacency list.

Hint: How can we express the “state” of the truck at any given time? In most graph problems, the state of
the truck would be a vertex 𝑣 ∈ 𝑉 . What is it for this problem?

(Optional) What if there were no refrigeration constraints and the items could be bought in any order?
What would be the runtime of a similar algorithm in this scenario?

7 Scheduling with penalties

You are given 𝑛 tasks. Task 𝑖 requires 𝜏𝑖 ∈ ℕ units of processing time and incurs a penalty 𝑝𝑖 > 0 for every
unit of time it waits before being completed. Tasks are processed on a single machine that can process at
most one task at a time.

2The road network dataset for the USA has approximately 𝑛 = 2 ⋅ 10
7 vertices and 𝑚 = 3 ⋅ 10

7 edges.
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Let 𝐶𝑖 denote the completion time of task 𝑖 in the schedule. The total penalty of a schedule is
𝑛

∑

𝑖=1

𝑝𝑖 ⋅ 𝐶𝑖.

1. Show that sorting the tasks in increasing order of processing time 𝜏𝑖 does not always produce a
penalty minimizing schedule.

2. Find a different objective function for a greedy algorithm for penalty minimization. Prove correct-
ness and give runtime.

Hint: For part (2), consider two tasks scheduled consecutively in the “wrong” order and show that swapping
them strictly improves the objective value.

8 Assignment with thresholds

Assume there are 𝑛 items with values 𝑣1, … , 𝑣𝑛 ∈ ℤ≥0. Assume there are 𝑛 customers with requirement
thresholds 𝑟1, … , 𝑟𝑛 ∈ ℤ≥0. Say an assignment of items to customers is valid if

1. The assignment is a matching: Each item is assigned to at most 1 customer, and each customer is
assigned at most 1 item.

2. If item 𝑖 is assigned to customer 𝑗 then 𝑣𝑖 ≥ 𝑟𝑗 .

Find the valid assignment of items to customers that maximizes the number of items that are assigned.
Prove your algorithm is correct and analyze its runtime.

Hint: For a helpful starting point, cook up some small 𝑛 ≈ 5 sized examples and draw the optimal assign-
ment/matching. What do you notice about it?

9 Adjusting MSTs

Consider a weighted undirected connected graph 𝐺 = (𝑉 , 𝐸) with weight function 𝑤 ∶ 𝐸 → ℝ. Let 𝑇 be a
minimum spanning tree for 𝐺.

Design a𝑂(𝑚) runtime algorithm for deciding if the minimum spanning tree needs updating when an edge
𝑒 ∈ 𝐸 has its weight adjusted from 𝑤(𝑒) to 𝑤′. You can assume the edge is between distinct vertices (𝑢, 𝑣).
Prove runtime and correctness. The algorithm does not need to calculate the new MST. You only need to
decide if the MST needs updating.

Hint: Is there a theorem from the lectures that could help identify if the MST needs updating?
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Part II

Challenge problems

51 Articulation points

For an undirected connected graph 𝐺 = (𝑉 , 𝐸), a vertex 𝑣 is defined as an articulation point if the
removal of 𝑣 and its adjacent edges disconnects the graph into two or more connected components. We
will construct a 𝑂(𝑛 + 𝑚)-time algorithm for finding all the articulation points of a connected graph.

1. Let 𝐺 be a connected graph with at least two vertices. Let 𝑇 be a DFS tree of 𝐺 rooted at 𝑟 . Prove
that 𝑟 is an articulation point iff 𝑟 has at least two children in 𝑇 .

2. Let 𝑣 be a vertex in the graph and let 𝐵1, … , 𝐵𝑘 be the subtrees of the DFS tree 𝑇 descending from 𝑣.
Prove that 𝑣 is not an articulation point iff for each subtree 𝐵𝑖, there exists a back edge from 𝐵𝑖 to a
proper ancestor3 of 𝑣 in 𝑇 .

3. Enumerate the vertices, #(𝑣), in the order they are visited by the DFS algorithm generating 𝑇 from
root 𝑟 . For any vertex 𝑣, let 𝐵𝑣 be the subtree of 𝑇 rooted at 𝑣. Define low𝑇 (𝑣) as the minimum of
#(𝑣) and #(𝑢) for any proper ancestor 𝑢 of 𝑣 connected to 𝐵𝑣 by a single back edge.

Construct an algorithm4 for computing low𝑇 (𝑣) for the DFS tree 𝑇 rooted at 𝑟 that runs in time
𝑂(𝑛 + 𝑚). Prove runtime and correctness.

3A proper ancestor of 𝑣 is a vertex along the path between 𝑣 and 𝑟 in 𝑇 not including 𝑣.
4You do not need to reinvent the wheel here. If your algorithm is a minor modification of a known algorithm such as DFS,

you can simply write, "We modify DFS to calculate [blank] after we have traversed its children."
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4. Having computed low𝑇 (𝑣) for every vertex for a DFS tree rooted at 𝑇 , use the property proven in
Part 2 to compute all the articulation points of the graph in time 𝑂(𝑛 + 𝑚). Prove runtime and
correctness.

52 Independent set

For an undirected graph 𝐺 = (𝑉 , 𝐸), an independent set 𝑉 ′
⊂ 𝑉 is a set of vertices such that there are no

edges between elements of 𝑉 ′. A computational task of interest is finding the largest possible indepen-
dent set within a graph 𝐺. Today, we construct a greedy algorithm for finding an independent set of size
≥ 𝑛/(𝑑 + 1) where 𝑑 = 2|𝐸|/|𝑉 | is the average degree.

The high-level idea of the algorithm is fairly simple and should remind you of examples we have observed
in class: Given the input undirected graph, pick the vertex of smallest degree to add to the independent
set, prune5 it and its neighbors from the graph, and repeat.

1. Give an example of a graph where the greedy algorithm fails to find the optimal independent set.

2. Spell out the algorithm in more detail using better data structures and prove its runtime.

3. Analyzing a greedy approximation algorithm is something you have only seen a few times. We’ll
walk you through another analysis here. Let’s observe that the algorithm terminates once all vertices
are pruned. Let 𝐼 ⊆ 𝑉 be the independent set produced by this greedy algorithm. For 𝑣 ∈ 𝐼 , define
𝑓 (𝑣) to be the number of vertices (including 𝑣) that are pruned when 𝑣 is added to 𝐼 .

(a) What is an equation comparing 𝑛 and {𝑓 (𝑣)}𝑣∈𝐼?

(b) In terms of 𝑓 (𝑣), give a lower bound for the sum of the degrees of all the vertices pruned when
𝑣 is added to 𝐼 .

(c) Express this as an inequality relating 𝑑, the average degree, and the set of values {𝑓 (𝑣)}𝑣∈𝐼 .

(d) Apply the following property:

(

∑

𝑣

𝑓 (𝑣)

)

2

≤ |𝐼 |∑

𝑣

𝑓 (𝑣)
2
.

This is the Cauchy-Schwarz inequality and can be proven by expanding the statement

∑

𝑣,𝑤∈𝐼

(𝑓 (𝑣) − 𝑓 (𝑤))
2
≥ 0.

(In your solution, you can assume the Cauchy-Schwarz inequality for free).

(e) Now conclude that |𝐼 | ≥ 𝑛/(𝑑 + 1).
5Pruning a vertex from a graph means removing it and all its associated edges.
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53 Profit-based job scheduling

In this variant of the job scheduling problem, there are 𝑛 jobs each with an integer deadline 𝑑𝑖 ∈ {1, … , 𝑛}

and a profit 𝑝𝑖 > ℝ>0. Each job takes unit time to complete, and the profit earned per job is 𝑝𝑖 if the job’s
termination time 𝑡𝑖 is ≤ 𝑑𝑖 and the profit earned is 0 if the job’s termination time 𝑡𝑖 is > 𝑑𝑖. The earliest
start time for any job is 0.

Construct an algorithm that outputs the termination times for each of the jobs in a profit-maximizing
schedule. It is okay to answer ∞ for the termination time for a job, indicating that you do not intend to
undertake said job. Assume that the arithmetic of deadlines and profits has 𝑂(1) time and space complex-
ity. Provide proofs of runtime and correctness.

For 8 points, your algorithm should run in time 𝑂(𝑛
2
). For full credit, your algorithm should run in time

𝑂(𝑛 log 𝑛).

Hints and suggestions:

1. One step in your argument will be showing that any optimal solution assigns only integer termina-
tion times. Convince yourself this is true. To make your life and our grading easier, you don’t need
to give a proof of this statement in your answer. You may assume it for free.

2. Like many examples in class, a good place to start a proof of correctness is to consider the first time
your algorithm and a strategy deviate.

3. In our solution, there was some casework required to prove our algorithm’s correctness.
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