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Lecture 9
Multiplication algorithms
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Analysis divide and conquer runtimes
The master theorem

• For solving recursive equations of the form 
 

             and 


• Different cases based on how , and  compare:

T(n) = a ⋅ T ( n
b ) + f(n) T( < b) = O(1)

f(n), a b
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Analysis divide and conquer runtimes
The master theorem

• For solving recursive equations of the form 
 

             and 


• Different cases based on how , and  compare:


• If , then 


• If , then 


• If , then 

T(n) = a ⋅ T ( n
b )+O(nk) T( < b) = O(1)

f(n), a b

a < bk T(n) = O(nk)

a = bk T(n) = O(nk log n)

a > bk T(n) = O(nlogb a)
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Proof of the master theorem

• Proof strategy: 

• Due to recursion, the problem has a tree like structure


• Calculate the amount of work done by the “conquer” step at each level


• Count how many levels of computation there are
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Proof the master theorem

• Let  so d = ⌈logb n⌉ n ≤ bd
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Proof the master theorem

• Let  so d = ⌈logb n⌉ n ≤ bd
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Matrix, integer, and (some) 
polynomial multiplication
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Integer multiplication

• Input: Two -bit binary numbers 


• Output: A -bit binary number


• Gradeschool multiplication algorithm takes  time

n x, y ∈ {0,…,2n − 1}

2n

O(n2)
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The Karatsuba method

T(n) = 4T ( n
2 ) + O(n) ⟹ T(n) = O(nlog2 4) = O(n2)
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The Karatsuba method

T(n) = 3T ( n
2 ) + O(n) ⟹ T(n) = O(nlog2 3) = O(n1.58)
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Improving integer multiplication

• Fast integer multiplication is used in high-precision arithmetic


• Storing a number to -bits of precision is equal to  precision


• Karatsuba’s algorithm is not the fastest


• Fastest is  based on the fast Fourier transform (not covered)


• These are galactic algorithms (not useful in practice)

n 2−n

O(n log n)
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Matrix multiplication

• Input: Two matrices 


• Output: The matrix 

A, B ∈ ℝn×n

AB ∈ ℝn×n
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Trivial algorithm for matrix multiplication

• Algorithm: 

• Initialize  array  as zeroes


• For ,       


• Return .


• Runtime:  multiplications +  additions 

• Can we improve this with divide and conquer?

n × n C

i ∈ [n], j ∈ [n], k ∈ [n] Cij ← Cij + Aik ⋅ Bkj

C

n3 n3
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Matrix multiplication naturally decomposes

• Matrix multiplication of matrices 
 
 
 
 
 

• Divide and conquer: 

• Decompose into 8 matrix multiplications of  matrices and 4 matrix additions of 
 matrices


•  

n/2 × n/2
n/2 × n/2

T(n) = 8T ( n
2 ) + 4 ( n

2 )
2

⟹ T(n) = O(nlog2 8) = O(n3)
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Strassen’s divide and conquer (1968)

• Can we decrease the number of mini-multiplications at the cost of increasing the 
number of mini-additions?


• If we were to somehow decrease to 7 multiplications but 18 additions …


• 


• But how do we achieve this decrease? 


• Find repeated terms.

T(n) = 7T ( n
2 ) +

18
4

n2 ⟹ T(n) =
18
4

⋅ O(nlog2 7) = O(n2.8074)
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A clever decomposition
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A clever decomposition
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A clever decomposition
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A clever decomposition
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A clever decomposition
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A clever decomposition
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Wikipedia article for Strassen’s algorithm



Strassen’s algorithm details

• Best for matrices of size . Pad the matrix with zeroes until it is.


• Strassen’s has 18 mini-additions. Only beneficial if . 


• For smaller matrices, use  algorithm.


• Still a base case for the recursive definition. Only adjust  constants.


• Is there an even cleverer decomposition into fewer mini-multiplications?


• Not for dividing into  mini-matrices


• Other divisions plus clever tricks have gotten algorithms down to  [May 2024]


• Major open question:  time algorithm possible for all . 

2m × 2m

n ≥ 32

O(n3)

O( ⋅ )

n/2 × n/2

O(n2.371339)

O(n2+ϵ) ϵ > 0
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• An algorithm for combining two signals to form 
a third signal


• Shows up most commonly now in convolution 
neural networks


•  vs


• 


• This is the area under the curve  with 
weights defined by 


• Let’s you smooth out the curve  by picking 

( f * g)k :=
n

∑
j=0

fj ⋅ gk−j

( f * g)(x) = ∫
∞

−∞
f(τ)g(x − τ)dτ

f
g

f g
Source: Medium post by TDS archive.

Convolution
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Convolution
Gaussian blurring and edge detection

• Ex. We can also apply a 2D version of convolution for image processing
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Source: Stanford 315b lectures



Convolution

• Filtering signals (low-pass, high-pass) 


• Convolve with a signal to filter out certain frequencies 


• Audio effects (reverb, echo, suppression)


• Image processing


• And more!
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Median

• Input: Input list  for  odd.


• Output: The median element i.e.  when .


• An upper bound for the runtime is  from sorting + selecting.


• Can we do better? Could we achieve ?

⃗x = (x1, x2, …, xn) ∈ ℝn n

y(n+1)/2 ⃗y = sort( ⃗x)

O(n log n)

O(n)
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Median

• Consider a divide and conquer algorithm for median


• What would the recurrence relation have to be for ?


• Case 1: 


• Challenge is to split the problem  into two halves with  compute


• And to “stitch” the solutions to the two subproblems together in  compute


• Case 2: 


• With  time, we can make a constant number of passes through the list 


• After constant number of passes, we need to find a sublist  of size  which must contain the median


• Then we recurse on the sublist 

T(n) = O(n)

T(n) = 2T(n/2) + O(1)

X O(1)

O(1)

T(n) = T(n/2) + O(n)

O(n) X

X′￼ n/2

X′￼
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Selection

• Let’s define a more general problem called “Selection”


• Input: pair .


• Output: The -th element  when .


• Generalizes the median problem

( ⃗x, k) ∈ ℝn × [n]

k yk ⃗y = sort( ⃗x)
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Selection
Find the 6th element
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Selection
Find the 6th element
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Selection
Find the 6th element
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Selection

• Recursive algorithm :


• Randomly sample  from . Call  the “pivot”.


• Filter  into , , and  based on if , , or .


• If , recursively output .


• Else if, , output .


• Else, recursively output .

Selection(X, k)

j [n] xj

X XL XE XR xi < xj xi = xj xi > xj

|XL | ≥ k Selection(XL, k)

|XL | + |XE | ≥ k xj

Selection(XR, k − |XL | − |XE | )
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Runtime analysis

• In order to apply the master theorem, we would need to argue that each recursive call was reducing 
the input size from  to  for 


• 


• However, each call may not reduce the size from  to 


• Depends on how close the randomly chosen  is to the middle


• If pivot  was the largest element, then , and .


• Decreases instance size from  to .


• Fortunately, the probability this occurs is .

n n/b b > 1

T(n) = T(n/b) + cn ⟹ T(n) =
c

1 − 1/b
n

n n/b

xj

xj |XL | = n − 1, |XE | = 1 |XR | = 0

n n − 1

1/n
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Runtime analysis

• Amortized analysis: 

• If pivot  is the -th element, then the next problem is of size 
.


• With probability , pivot  is the -th element for .


• The expected compute in reducing from -sized instance to a -sized 
instance is .


• Total expected runtime: .

xj ℓ
≤ max{ℓ, n − ℓ}

≥ 1/2 xj ℓ ℓ ∈ {n/4,…,3n/4}

n 3n/4
O(n)

T(n) = T(3n/4) + O(n) ⟹ T(n) = O(n)
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Runtime analysis

• Amortized analysis: 

• If pivot  is the -th element, then the next problem is of size .


• With probability , pivot  is the -th element for .


• The expected compute in reducing from -sized instance to a -sized instance is .


•  probability, shrinks in 1 reduction.


•  probability, shrinks in 2 reductions.


• …  probability, shrinks in  reductions …


• Expected compute is 


• Total expected runtime: .

xj ℓ ≤ max{ℓ, n − ℓ}

≥ 1/2 xj ℓ ℓ ∈ {n/4,…,3n/4}

n 3n/4 O(n)

≥ 1/2

≥ 1/4

≥ 1/2j j

≤ O(n) ⋅ (
1
2

+
1
4

⋅ 2 +
1
8

⋅ 3 + …) = O(n) ⋅ 2

T(n) = T(3n/4) + O(n) ⟹ T(n) = O(n)
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