Lecture 9

Multiplication algorithms

Chinmay Nirkhe | CSE 421 Winter 2026

Analysis divide and conquer runtimes

The master theorem

* For solving recursive equations of the form

I(n)=a-T (%) + f(n)and T(< b) = O(1)

» Different cases based on how f(n), a, and b compare:

Analysis divide and conquer runtimes

The master theorem

* For solving recursive equations of the form

In)=a-T (%)+0(nk) and 7(< b) = O(1)

» Different cases based on how f(n), a, and b compare:
e Ifa < bX, then T(n) = O(n*)
. If a = b*, then T(n) = O(n*log n)

e Ifa > b*, then T(n) = O(n'°%%)

Proof of the master theorem

* Proof strategy:

* Due to recursion, the problem has a tree like structure

@ O 0O
B VANSWEN

» Calculate the amount of work done by the “conquer” step at each level

 Count how many levels of computation there are

4

Proof the master theorem

. Letd = [log,n] son < b

level +# of preewns Congitte, per congun.
A 4 n

ol-1 a (/)"

oy o> (/)"

1 o4 1

Thf\bl wv\«?JCtZ, ot leve]

'R
n

a (VL/(O),L _ <q/bL>. VLL

aj\(w/ b;’)L = <°‘/19L>}- ne

ol
a

Proof the master theorem

, 5 le_
ﬂ’(‘a\ COW\’FItZ =) J (ju N
é‘—‘o leest o 0{1
) d 2 3 0o K . L -Pﬁ;v -\-&\a\g.
BT R DI ORI ORI CR SHECI e (A
=0 j=0
|f a= bk) hen i({t)é' - ij ded = C)Q/L'“ (oy‘}
3=0 320
d 4
_.lf A > bk)44,% Z@“)} _ C%)‘}:_é O(‘%f%k)"a(ad):OCVL\O‘QJ'”Q>

Analysis divide and conquer runtimes

The master theorem

* For solving recursive equations of the form

In)=a-T (%)+O(nk) and 7(< b) = O(1)

» Different cases based on how f(n), a, and b compare:
. If a < b¥, then I'(n) = O(I/lk) & most o{ the Cowpu s i The (af3w+ Conguen s\—r_ly
° If 0 = bk, then T(n) — O(Hk log n) <— Q&d,\ (eve\ l/\aS Qa C.Q'W\W\U/\SLM'O.t OLW\W\DU\V\.‘\' G-F CUVV\L)\At

e Ifa > bk, then T(n) = 0(n10gba) & the Numben 0{'\ leowes dowtinaly Hhe Cow«l)u‘\'n'ﬁov\,

14

Matrix, integer, and (some)
polynomial multiplication

Integer multiplication

e Input: Two n-bit binary numbers x,y € {0,...,2" — 1}

e Output: A 2n-bit binary number

o wet measueedd i RAM wmetl]

. Com\)‘ev'\¥7’
A

_ \V\S\’E&&Q \m_,(nwamlsen o1

|

bin w\7 0‘)“2\‘\"\ M4 "“*‘:l_"““i

. Gradeschool multiplication algorithm takes O(n?) time

1 0 06 4

x 114 0 1

1 o 0 4
ol\o o0 0 O

14 0 |0 41 OO0

+ 14 O 04 oo
1.14 0 4 0 4

The Karatsuba method

[x 1 = A2
_ (7:7&%' N %3 (2“‘/1 ¥, 4 70)

= 2 %y Zﬂ"@‘yo + 'xoyﬁ t Koo
- R"‘(&jv[% \)*i‘/l(Tx'lx[Vo "I%A]XD_T)" T‘xo]
i \C’F-\— sl/dp\—s j
- Nno im]o(oveva/ﬁ’s.

T(n) =4T (ﬁ) + 0(n) = Tn) = O(n'°8%) = O(nZ)L

XFyo“[.

2

The Karatsuba method

[x [« A2
(2\, %,+%>(2 Yo+ 7’)

"o

S AR R A A R
= 2 7(,7“ + l ((‘7(‘4.')(0)(7/, "“/o) = 7‘\\/: '_‘Ya\/o> + 9(0’}/0.

T(n) = 3T (g) + 0(n) = T(n) = 0(n'°e°) = O(n'>?%)

Improving integer multiplication

* Fast integer multiplication is used in high-precision arithmetic

 Storing a number to n-bits of precision is equal to 27" precision

o Karatsuba’s algorithm is not the fastest

» Fastest is O(n log n) based on the fast Fourier transform (not covered)

 These are galactic algorithms (not useful in practice)

12

Matrix multiplication

e Input: Two matrices A, B € R™"

e Output: The matrix AB € |

nxn

A r
bl& C i
bLB = | €4
C

bss) A\

13

|z

2

32

Trivial algorithm for matrix multiplication

e Algorithm:
o |nitialize n X n array C as zeroes

 Forie[n],je(nl,keln], C;< Ci+Ay- B

 Return C.

3

 Runtime: n- multiplications + n> additions

e Can we improve this with divide and conquer?

14

Matrix multiplication naturally decomposes

 Matrix multiplication of matrices p s oo ok commit
An Al?_ B \1 ’B 1Z AI\B||+ AI9rB2-| AH(BI?. + A,{Bn
Au ALZ le BLZ Al\Bll+A2?.Bz| AZ\(B\‘L"' Azszzz
| |

 Divide and conquer:

« Decompose into 8 matrix multiplications of n/2 X n/2 matrices and 4 matrix additions of

n/2 X n/2 matrices

n n : log, 8 3a.=8
, I(n) =38T Y + 4 Y —> T(n) = O(n 2)=0(n)b-—-1
= A

15

o> L,kz

lea —]/\ca,\/Y C.(‘JW\F'AT

Strassen’s divide and conquer (1968)

 Can we decrease the number of mini-multiplications at the cost of increasing the
number of mini-additions??

e |f we were to somehow decrease to 7 multiplications but 18 additions ...

18 18
. T(n) =17T (%) + Tnz = Tn) =—~ O(n'°827) = O(n**""%)

L

a > l:) k)u.“‘

b

e But how do we achieve this decrease?

|

~ ¢ D
)
oS 4

 Find repeated terms.

16

A clever decomposition

We. lenow That

A clever decomposition

A clever decomposition

NOV\)| \/\)\/\a’\' |/\o\m>cn5 3€ We, wavx{' 4‘0

C-O\\C}A\O\'\‘Q

M= (A <A) (B + By

= B\\ ¥ B21+ FB'\)

A clever decomposition

Anotiror c;xoumPlc,,. .

M/= CB Y %LZ

]
Jos
S

|
[~
~

A clever decomposition

We con odst Hrese. dageams. . &

M/ = CB Y %L?_

; M&\"‘%(}l\'c&h‘»\g =

A clever decomposition P

1 M"‘"’L + lV"‘W/""" 4 v 1 W\M.N'.l- :’_MM",'-|- 1vv\ul1l'.|— 1\,,\.4“-.,_
9 m(o{id‘mm 1 adodfion 1 oddden 1 cbbon 1 oddibim Zm(aﬁﬁm . cAddidiyn; } 0, aolodihon 3

{ 4 L / V4 / z
M2 M3 M4 M5
’/zz/ VA i v /S S S //////
62y /S S S S S S S S ///’///// C M,/.M M+]~1
///// /S S S S S S S S S 1 ‘{ 7
52///// /S S S S LSS LSS LSS S S HZ?//////

[777 [T [I777 [TI77 [TI77 [T [TITT [T
177 LT [T el 777 (L7 I I LT C.=M™M,+Mc¢
[T 777 /77 [T777 [T777 [T777

Vo v av oo Al v o 7 T T T

o om [T T 77 [T 7 [T 777 [T777 [T777
<27/9§1? /;;”/WWWW’///ér///// STTTT [T 777 =M, - M
/T 7T Vv A o A Y v v i v v v Y 2] 1 °

(/S LSS S S S LSS LSS LSS

[[/))/ ’Zy zZH [/ /S S) LSS LSS [[/) [/
c22 (/S S) LSS L LSS /////c _MPM_,,IW,\,M
Wif{i/ /////i///////////// aayai 99 — [9 3 A
[[[[/ [/L) [LS L LT [L L [T
S — A L)
Wikipedia article for Strassen’s algorithm ~
Mr"‘(A + A)Y) g
:<A|1+ALL>CB“ &-B‘L> 1! 7] “1 ¥ addidrons

22 qu AZZ<BL|—B|I.>

Strassen’s algorithm details

» Best for matrices of size 2" X 2. Pad the matrix with zeroes until it is.
 Strassen’s has 18 mini-additions. Only beneficial if n > 32.
. For smaller matrices, use O(n>) algorithm.

« Still a base case for the recursive definition. Only adjust O(-) constants.

* |s there an even cleverer decomposition into fewer mini-multiplications?
* Not for dividing into n/2 X n/2 mini-matrices
» QOther divisions plus clever tricks have gotten algorithms down to O(n2'371339) [May 2024]

. Major open question: O(n**¢) time algorithm possible for all € > 0.

23

Convolution i e i

* An algorithm for combining two signals to form
a third signal

 Shows up most commonly now in convolution
neural networks

(f + 8 = Z]ﬁ * 8k—j VS
j=0

. (= gx) = J f)glx — 7)dr

* This is the area under the curve f with
weights defined by ¢

— —4 —2 0 2 4

» Let’s you smooth out the curve f by picking g

Source: Medium post by TDS archive.
24

Convolution g a7 g

* An algorithm for combining two signals to form
a third signal

 Shows up most commonly now in convolution
neural networks

(f + 8 = Z]ﬁ * 8k—j VS
j=0

. (= gx) = J f)glx — 7)dr

* This is the area under the curve f with
weights defined by ¢

—0 —4 =2 0 2 4

» Let’s you smooth out the curve f by picking g

Source: Medium post by TDS archive.
25

Convolution 3 e

* An algorithm for combining two signals to form
a third signal

 Shows up most commonly now in convolution
neural networks

(f + 8 = Z]ﬁ * 8k—j VS
j=0

. (= gx) = J f)glx — 7)dr

* This is the area under the curve f with
weights defined by ¢

. —4 —~2 0 2 4

» Let’s you smooth out the curve f by picking g

Source: Medium post by TDS archive.
26

Convolution

Gaussian blurring and edge detection

 EX. We can also apply a 2D version of convolution for image processing

.“t
- L

~
P — - .\ n.
B0 gy

] - == qarnnm .
o o

—

-
v 'rf"’ e
e [; v i
'y Ll . -
> AR 4 ’f“ '
[y 1= Z ¥y
- TS o~ -! —

Source: Stanford 315b lectures

27

Convolution

* Filtering signals (low-pass, high-pass)

 Convolve with a signal to filter out certain frequencies
* Audio effects (reverb, echo, suppression)
* |mage processing

e And more!

28

Median

o Input: Input list X = (x{, X5, ..., x,) € R" for n odd.

» Output: The median element i.e. y,, 1), When y = sort(X).

» An upper bound for the runtime is O(n log n) from sorting + selecting.

» Can we do better? Could we achieve O(n)?

29

Median

* Consider a divide and conqguer algorithm for median
« What would the recurrence relation have to be for 7(n) = O(n)?
e Case1:T(n) =2T(n/2) + O(1)
« Challenge is to split the problem X into two halves with O(1) compute
» And to “stitch” the solutions to the two subproblems together in O(1) compute
e Case2: T(n) =1T(n/2)+ O(n)
« With O(n) time, we can make a constant number of passes through the list X
 After constant number of passes, we need to find a sublist X’ of size n/2 which must contain the median

« Then we recurse on the sublist X’

30

Selection

* |et’s define a more general problem called “Selection”

e Input: pair (X, k) € R" X [n].
+ Output: The k-th element y, when y = sort(X).

e (Generalizes the median problem

31

Selection
Find the 6th element

ole[#]2[a 3[4«

[2[[o [

Selection
Find the 6th element

\:O\‘il_(ﬂlli(% [q 4 [%kzli[o]g

Selection
Find the 6th element

ol B T < -
J —
[0 ﬂi(i\z]i\o [zE

lquu« 9

L \/ -~
reculse. own ’H’\iS St

Selection

» Recursive algorithm Selection(X, k):

. Randomly sample j from |n]. Call x; the “pivot”.

o Filter X into X;, Xz, and X, based on if x; < Xj, X; = X;, Or X; > X;.

. If | X; | > k, recursively output Selection(X;, k).

. Elseif, [X, |+ |Xg| = &, output x.

» Else, recursively output Selection(Xp, k — | X; | — | Xz |).

35

Runtime analysis

* |n order to apply the master theorem, we would need to argue that each recursive call was reducing
the input size from n to n/b forb > 1

. I'(n)=Tn/b)+cn = T(n) = - l/bn

« However, each call may not reduce the size from n to n/b

« Depends on how close the randomly chosen X; Is to the middle

+ If pivot x; was the largest element, then | X, | =n — 1,|Xg| = 1,and | Xi| = 0.

e Decreases instance size fromnton — 1.

 Fortunately, the probability this occurs is 1/n.

36

- - P
Runtime analysis g o L Torme

« Amortized analysis: Pot dus} n'é\»*“.

o |f pivot X; is the £-th element, then the next problem is of size
<max{f,n—17}.

» With probability > 1/2, pivot x; is the £-th element for £ € {n/4,...,3n/4}.

« The expected compute in reducing from n-sized instance to a 3n/4-sized
instance is O(n).

 Total expected runtime: T(n) = T(3n/4) + O(n) —> T(n) = O(n).

37

Runtime analysis

« Amortized analysis:

+ If pivot x; is the £-th element, then the next problem is of size < max{Z,n —¢}.
» With probability > 1/2, pivot x; is the £-th element for £ € {n/4,...,3n/4}.

» The expected compute in reducing from n-sized instance to a 3n/4-sized instance is O(n).
« > 1/2 probability, shrinks in 1 reduction.
« > 1/4 probability, shrinks in 2 reductions.

e ... > 1/2 probability, shrinks in j reductions ...

1 1 1
. Expected computeis < O(n) - (2 | 2 2+§ 34+ ...)=0(n) -2
 Total expected runtime: T(n) = T(3n/4) + O(n) — T(n) = O(n).

38

