

Lecture 9

Multiplication algorithms

Chinmay Nirke | CSE 421 Winter 2026

W

Analysis divide and conquer runtimes

The master theorem

- For solving recursive equations of the form

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + f(n) \text{ and } T(n < b) = O(1)$$

- Different cases based on how $f(n)$, a , and b compare:

Analysis divide and conquer runtimes

The master theorem

- For solving recursive equations of the form

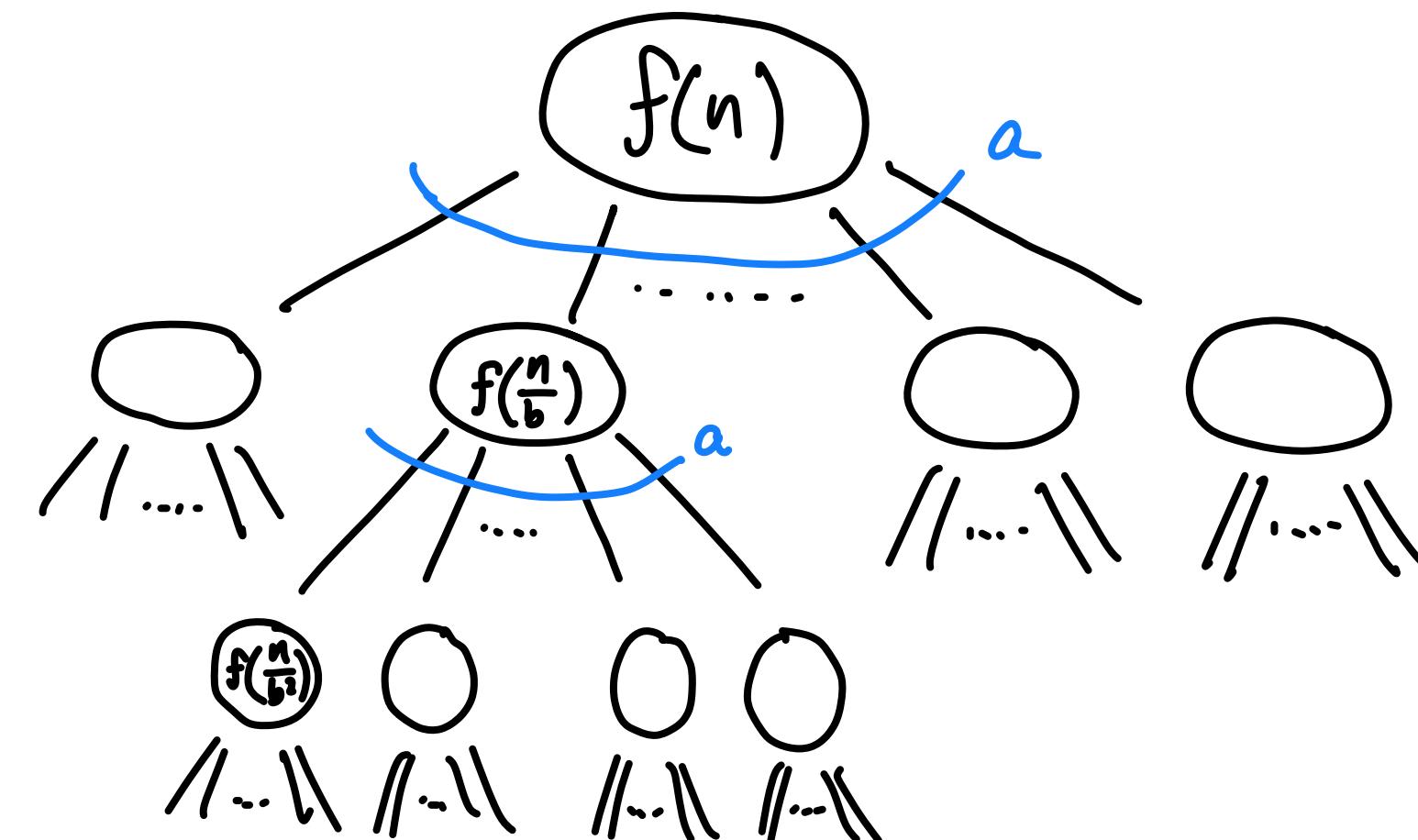
$$T(n) = a \cdot T\left(\frac{n}{b}\right) + \mathcal{O}(n^k) \text{ and } T(n < b) = O(1)$$

- Different cases based on how $f(n)$, a , and b compare:

- If $a < b^k$, then $T(n) = O(n^k)$
- If $a = b^k$, then $T(n) = O(n^k \log n)$
- If $a > b^k$, then $T(n) = O(n^{\log_b a})$

Proof of the master theorem

- **Proof strategy:**
 - Due to recursion, the problem has a tree like structure



- Calculate the amount of work done by the “conquer” step at each level
- Count how many levels of computation there are

Proof the master theorem

- Let $d = \lceil \log_b n \rceil$ so $n \leq b^d$

<u>level</u>	<u># of problems</u>	<u>compute per conquer</u>	<u>total compute at level</u>
d	1	n^k	n^k
$d-1$	a	$(n/b)^k$	$a(n/b)^k = (a/b^k) \cdot n^k$
:	:	:	:
$d-j$	a^j	$(n/b^j)^k$	$a^j(n/b^j)^k = (a/b^j)^j \cdot n^k$
:	:	:	:
1	a^d	1	a^d

Proof the master theorem

- Let $d = \lceil \log_b n \rceil$ so $n \leq b^d$

Total compute =
$$\sum_{j=0}^d \left(\frac{a}{b^k}\right)^j \cdot n^k$$

- If $a < b^k$, then

$$\sum_{j=0}^d \left(\frac{a}{b^k}\right)^j \leq \sum_{j=0}^{\infty} \left(\frac{a}{b^k}\right)^j = \left(1 - \frac{a}{b^k}\right)^{-1} \Rightarrow O(n^k).$$

- If $a = b^k$, then

$$\sum_{j=0}^d \left(\frac{a}{b^k}\right)^j = \sum_{j=0}^d 1 = d+1 \Rightarrow O(n^k \log n).$$

- If $a > b^k$, then

$$\sum_{j=0}^d \left(\frac{a}{b^k}\right)^j = \frac{\left(\frac{a}{b^k}\right)^d - 1}{\left(\frac{a}{b^k}\right) - 1} \Rightarrow O\left(\left(\frac{a}{b^k}\right)^d \cdot n^k\right) = O(a^d) = O(n^{\log_b a})$$

last row of
prev table.

Analysis divide and conquer runtimes

The master theorem

- For solving recursive equations of the form

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + O(n^k) \text{ and } T(n < b) = O(1)$$

- Different cases based on how $f(n)$, a , and b compare:

- If $a < b^k$, then $T(n) = O(n^k)$ ← most of the compute is in the largest conquer step
- If $a = b^k$, then $T(n) = O(n^k \log n)$ ← each level has a commensurate amount of compute
- If $a > b^k$, then $T(n) = O(n^{\log_b a})$ ← the number of leaves dominates the computation

Matrix, integer, and (some) polynomial multiplication

Integer multiplication

- **Input:** Two n -bit binary numbers $x, y \in \{0, \dots, 2^n - 1\}$
- **Output:** A $2n$ -bit binary number
 - Complexity is not measured in RAM model
 - Instead by number of binary operations required.
- Gradeschool multiplication algorithm takes $O(n^2)$ time

$$\begin{array}{r} 1001 \\ \times 1101 \\ \hline 1001 \\ 0000 \\ 1000 \\ + 1001 \\ \hline 1110101 \end{array}$$

A binary multiplication diagram showing $1001 \times 1101 = 1110101$. The diagram uses a grid of 16 cells (4 rows by 4 columns) to represent the partial products. The top row of the grid contains the bits of the first number (1, 0, 0, 1). The left column contains the bits of the second number (1, 1, 0, 1). The grid cells are filled with the product of the corresponding bits: 1, 0, 0, 1 in the top-left cell; 0, 0, 0, 0 in the second row; 0, 0, 0, 0 in the third row; and 1, 0, 0, 0 in the bottom-right cell. A red arrow points to the top-left cell (1). A green shaded L-shaped region highlights the bottom-right 3x3 subgrid of the 4x4 grid, representing the sum of the partial products.

The Karatsuba method

$$\begin{array}{|c|c|} \hline x_1 & x_0 \\ \hline \end{array} \times \begin{array}{|c|c|} \hline y_1 & y_0 \\ \hline \end{array}$$

$$= (2^{\frac{n}{2}}x_1 + x_0)(2^{\frac{n}{2}}y_1 + y_0)$$

$$= 2^n x_1 y_1 + 2^{\frac{n}{2}}(x_1 y_0 + x_0 y_1) + x_0 y_0.$$

$$= 2^n \left(\begin{array}{|c|} \hline x_1 \\ \hline \end{array} \times \begin{array}{|c|} \hline y_1 \\ \hline \end{array} \right) + 2^{\frac{n}{2}} \left(\begin{array}{|c|} \hline x_1 \\ \hline \end{array} \times \begin{array}{|c|} \hline y_0 \\ \hline \end{array} + \begin{array}{|c|} \hline x_0 \\ \hline \end{array} \times \begin{array}{|c|} \hline y_1 \\ \hline \end{array} \right) + \begin{array}{|c|} \hline x_0 \\ \hline \end{array} \times \begin{array}{|c|} \hline y_0 \\ \hline \end{array}.$$

↑
left shifts

$$T(n) = 4T\left(\frac{n}{2}\right) + O(n) \implies T(n) = O(n^{\log_2 4}) = O(n^2)$$

no improvements.

The Karatsuba method

$$\begin{array}{|c|c|} \hline x_1 & x_0 \\ \hline \end{array} \times \begin{array}{|c|c|} \hline y_1 & y_0 \\ \hline \end{array}$$

$$= (2^{\frac{n}{2}}x_1 + x_0)(2^{\frac{n}{2}}y_1 + y_0)$$

$$= 2^{\frac{n}{2}}x_1y_1 + 2^{\frac{n}{2}}(x_1y_0 + x_0y_1) + x_0y_0.$$

$$= 2^{\frac{n}{2}}x_1y_1 + 2^{\frac{n}{2}}\left((x_1 + x_0)(y_1 + y_0) - x_1y_1 - x_0y_0\right) + x_0y_0.$$

Identify 3 multiplications of size $\frac{n}{2}$

$$T(n) = 3T\left(\frac{n}{2}\right) + O(n) \implies T(n) = O(n^{\log_2 3}) = O(n^{1.58})$$

Improving integer multiplication

- Fast integer multiplication is used in high-precision arithmetic
- Storing a number to n -bits of precision is equal to 2^{-n} precision
- Karatsuba's algorithm is not the fastest
 - Fastest is $O(n \log n)$ based on the fast Fourier transform (not covered)
 - These are galactic algorithms (not useful in practice)

Matrix multiplication

- **Input:** Two matrices $A, B \in \mathbb{R}^{n \times n}$
- **Output:** The matrix $AB \in \mathbb{R}^{n \times n}$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \cdot \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{bmatrix}$$

where

$$c_{ij} = \sum_k a_{ik} b_{kj}.$$

Trivial algorithm for matrix multiplication

- **Algorithm:**
 - Initialize $n \times n$ array C as zeroes
 - For $i \in [n], j \in [n], k \in [n]$, $C_{ij} \leftarrow C_{ij} + A_{ik} \cdot B_{kj}$
 - Return C .
- **Runtime:** n^3 multiplications + n^3 additions
- Can we improve this with divide and conquer?

Matrix multiplication naturally decomposes

- Matrix multiplication of matrices

$$\begin{array}{|c|c|} \hline A_{11} & A_{12} \\ \hline \hline A_{21} & A_{22} \\ \hline \end{array} \cdot \begin{array}{|c|c|} \hline B_{11} & B_{12} \\ \hline \hline B_{21} & B_{22} \\ \hline \end{array} = \begin{array}{|c|c|} \hline A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ \hline \hline A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \\ \hline \end{array}$$

terms do not commute

- Divide and conquer:

- Decompose into 8 matrix multiplications of $n/2 \times n/2$ matrices and 4 matrix additions of $n/2 \times n/2$ matrices

$$T(n) = 8T\left(\frac{n}{2}\right) + 4\left(\frac{n}{2}\right)^2 \Rightarrow T(n) = O(n^{\log_2 8}) = O(n^3)$$

$a = 8$
 $b = 2$
 $k = 2$

$a > b^k \Rightarrow$
leaf-heavy computation

Strassen's divide and conquer (1968)

- Can we decrease the number of mini-multiplications at the cost of increasing the number of mini-additions?
- If we were to somehow decrease to 7 multiplications but 18 additions ...

$$\bullet T(n) = 7T\left(\frac{n}{2}\right) + \frac{18}{4}n^2 \implies T(n) = \frac{18}{4} \cdot O(n^{\log_2 7}) = O(n^{2.8074})$$

- But how do we achieve this decrease?
- **Find repeated terms.**

$a = 7 \quad a > b^k \text{ but}$
 $b = 2 \quad \log_b a \text{ is smaller...}$
 $k = 2$

A clever decomposition

We know that if

$$\boxed{A} \cdot \boxed{B} = \boxed{C}$$

$$\begin{array}{|c|c|} \hline A_{11} & A_{12} \\ \hline A_{21} & A_{22} \\ \hline \end{array} \cdot \begin{array}{|c|c|} \hline B_{11} & B_{12} \\ \hline D_{21} & B_{22} \\ \hline \end{array} = \begin{array}{|c|c|} \hline C_{11} & C_{12} \\ \hline C_{21} & C_{22} \\ \hline \end{array}$$

Pictorially, let's represent this fact by

$$C_{11} = \begin{array}{|c|c|c|c|} \hline A_{11} & A_{12} & A_{21} & A_{22} \\ \hline B_{11} & 1 & & \\ \hline B_{12} & 1 & & \\ \hline B_{21} & & & \\ \hline B_{22} & & & \\ \hline \end{array}$$

then $C_{11} = A_{11}B_{11} + A_{12}B_{21}$.

A clever decomposition

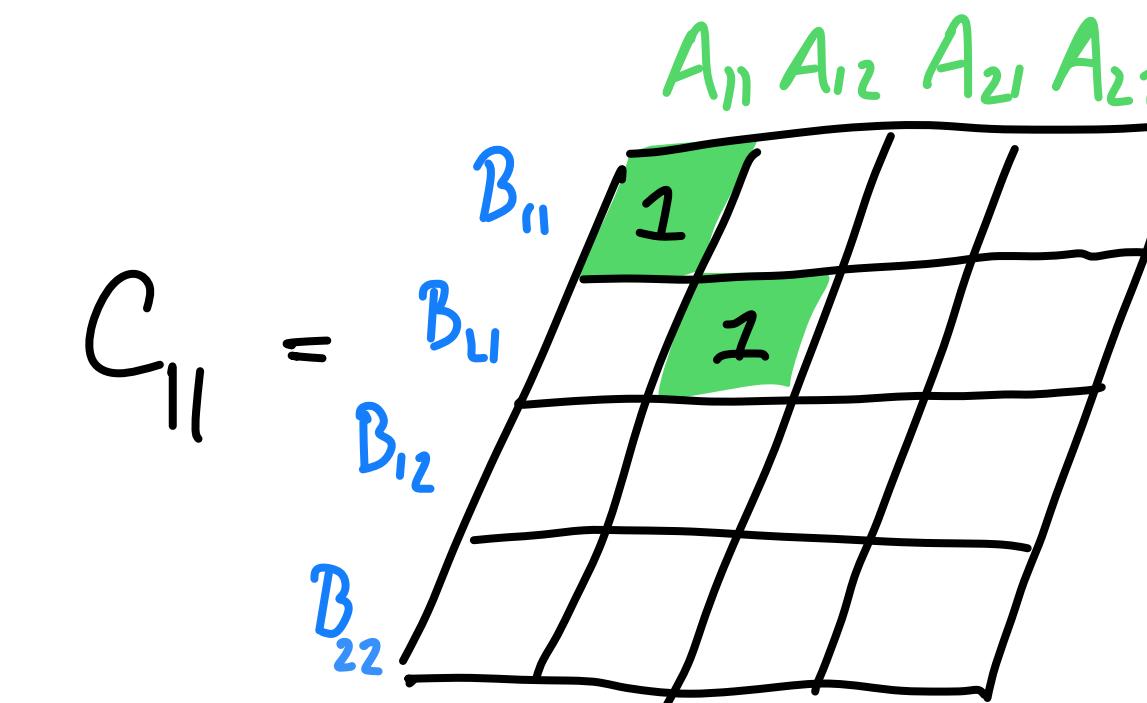
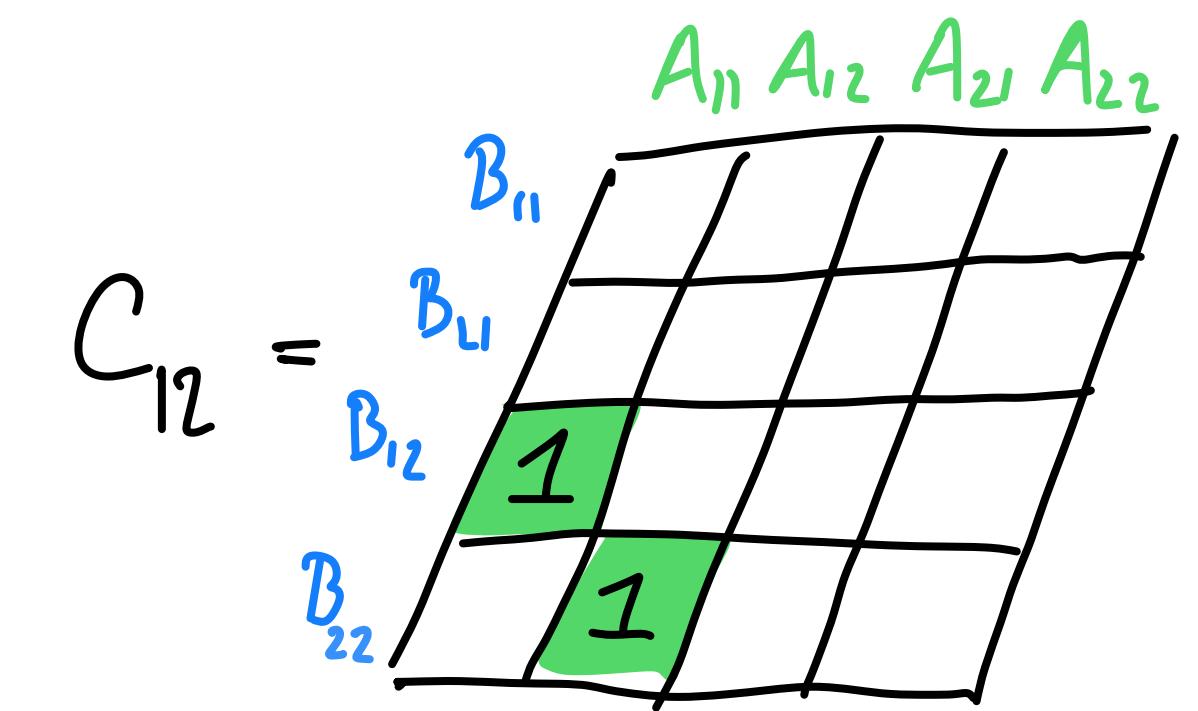
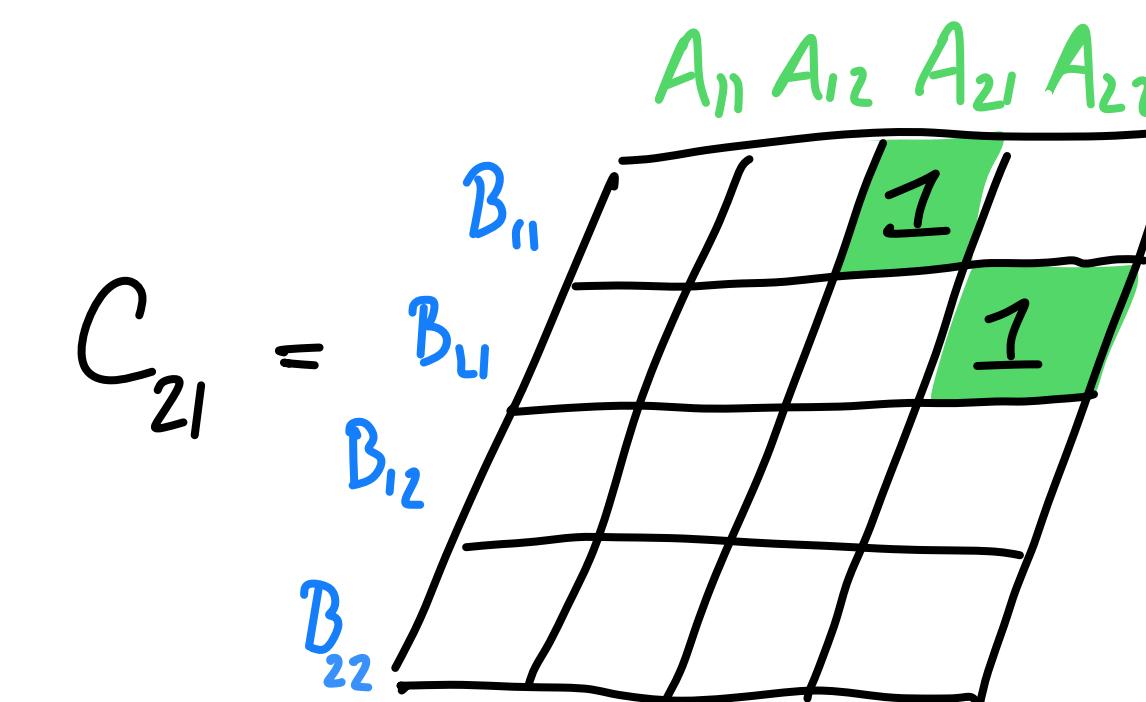
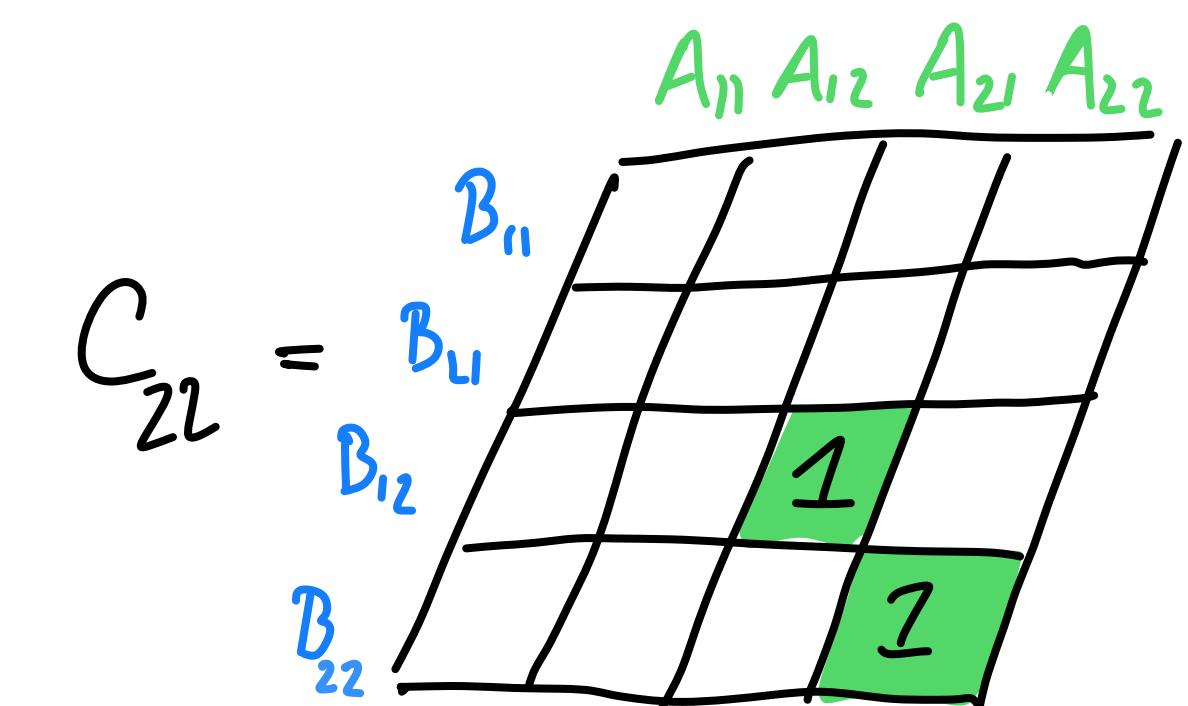
Similarly,

$$C_{11} = A_{11} B_{11} + A_{12} B_{21}$$

$$C_{12} = A_{11} B_{12} + A_{12} B_{22}$$

$$C_{21} = A_{21} B_{11} + A_{22} B_{21}$$

$$C_{22} = A_{21} B_{12} + A_{22} B_{22}$$



A clever decomposition

Now, what happens if we want to calculate

$$\begin{aligned} M &= (A_{11} + A_{22})(B_{11} + B_{22}) \\ &= A_{11}B_{11} + A_{11}B_{22} + A_{22}B_{11} + A_{22}B_{22} \end{aligned}$$

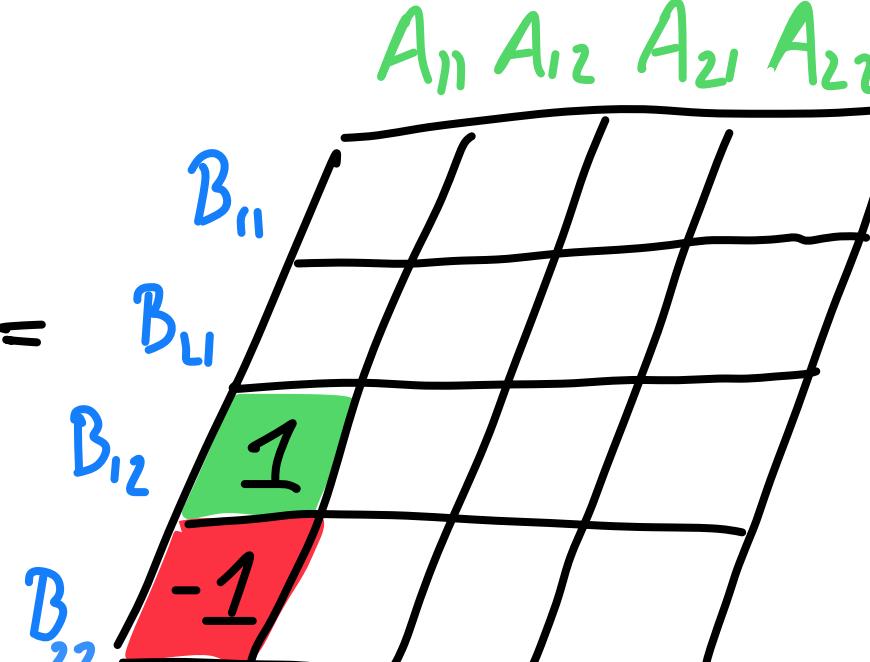
$$M = \begin{array}{c|c|c|c} A_{11} & A_{12} & A_{21} & A_{22} \\ \hline 1 & & & 1 \\ \hline & B_{11} & & \\ \hline & B_{12} & & \\ \hline & & 1 & \\ \hline & & & 1 \\ \hline \end{array}$$

A clever decomposition

Another example...

$$M' = A_{11} (B_{12} - B_{22})$$

$$= A_{11} B_{12} - A_{11} B_{22}$$

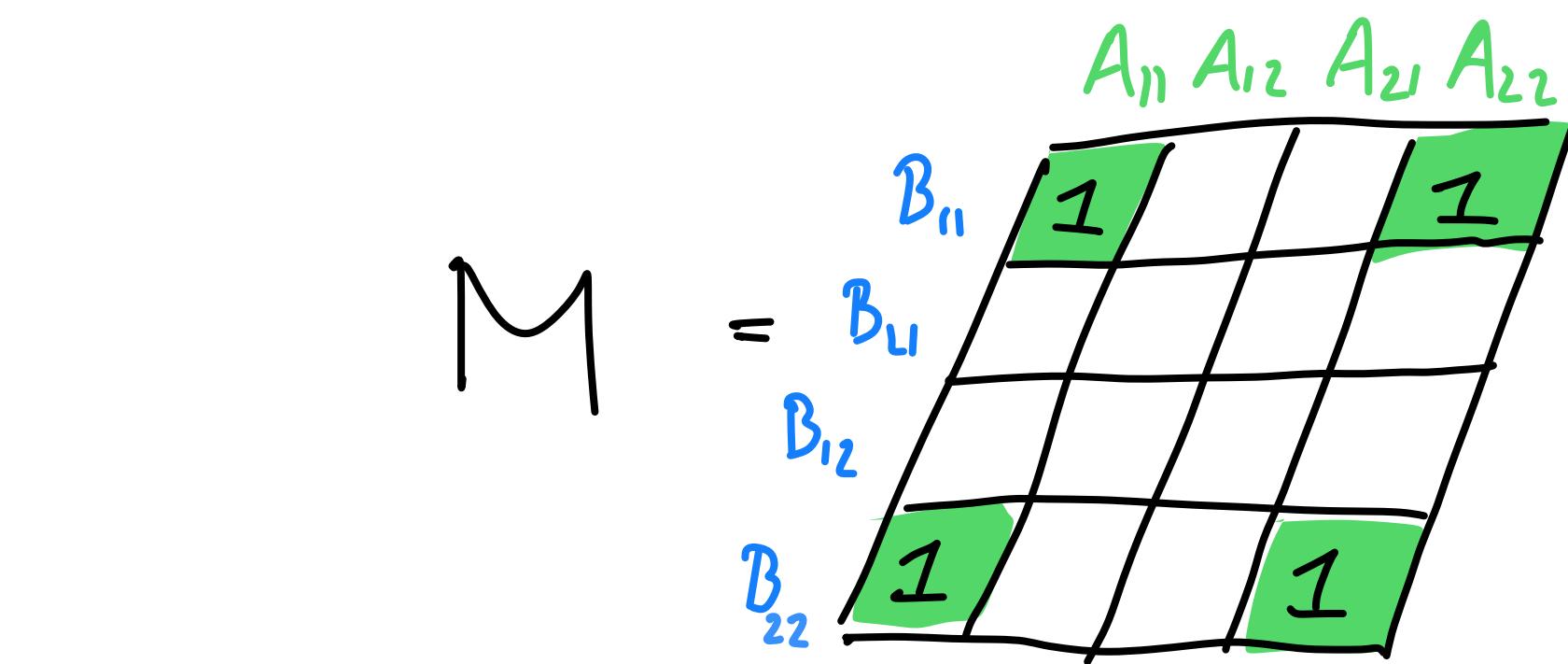
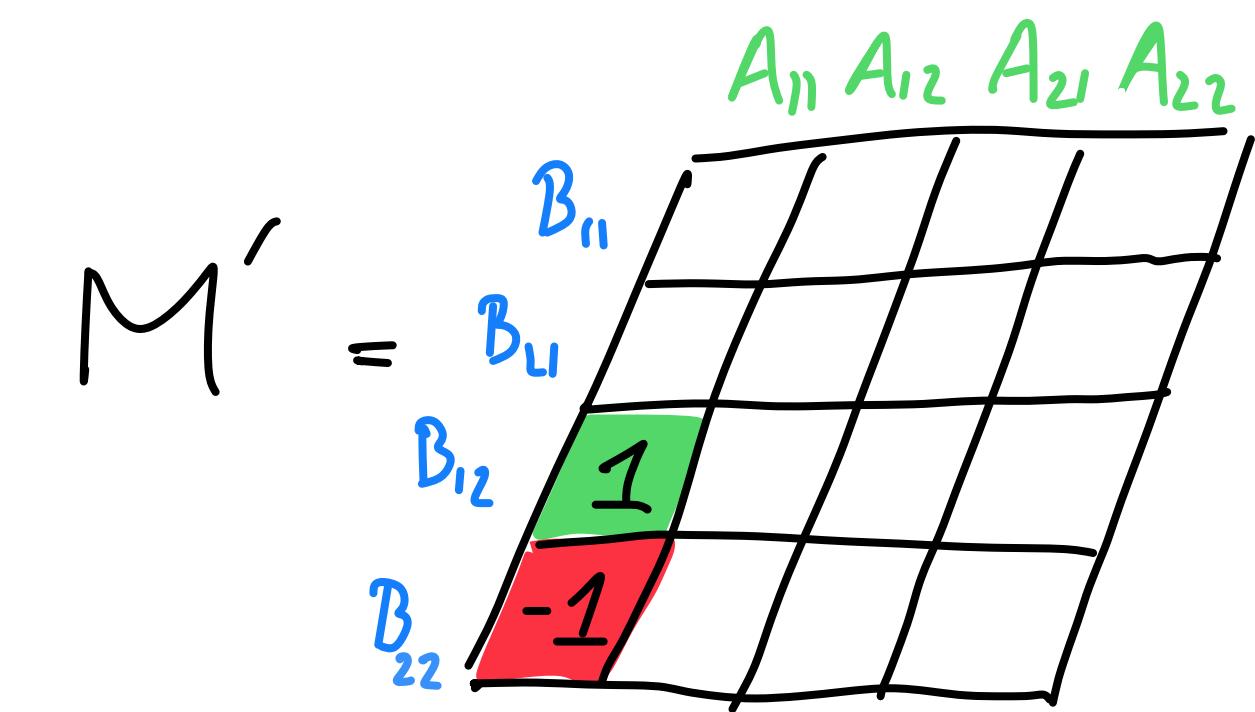
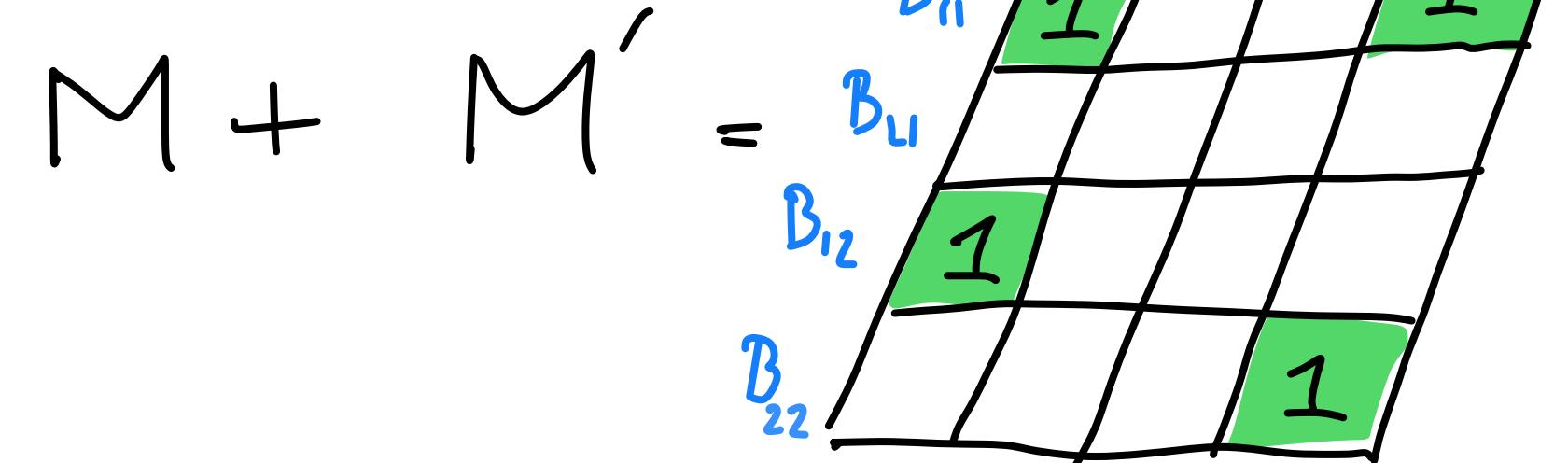
$$M' = \begin{array}{c} A_{11} \ A_{12} \ A_{21} \ A_{22} \\ \hline B_{11} \\ B_{11} \\ B_{12} \ 1 \\ B_{22} \ -1 \end{array}$$


A clever decomposition

We can add these diagrams...

$$M = (A_{11} + A_{22})(B_{11} + B_{22})$$

$$M' = A_{11}(B_{12} - B_{22})$$



A clever decomposition

1 mult + 1 mult +

2 additions 1 addition 1 addition 1 addition 1 addition 2 additions 2 additions

M1

M2

M3

M4

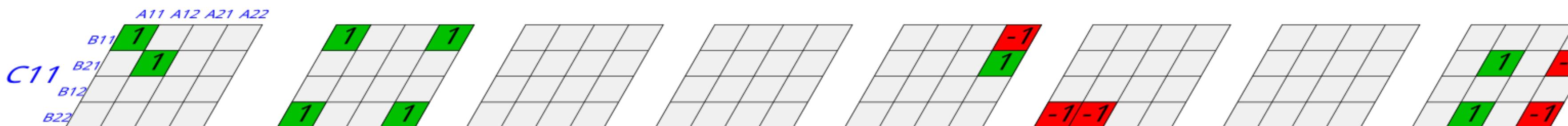
M5

M6

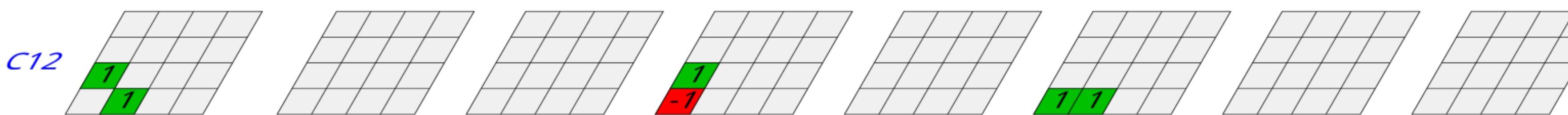
M7

7 multiplications +

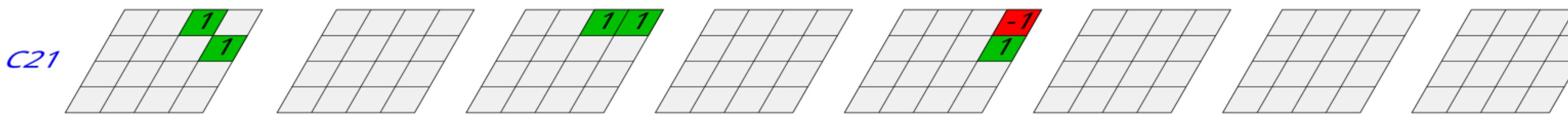
10 additions



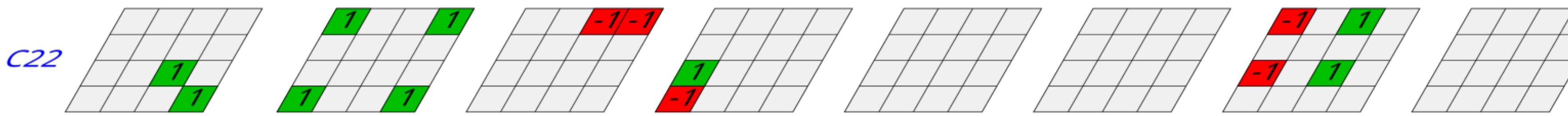
$$C_{11} = M_1 + M_4 - M_5 + M_7$$



$$C_{12} = M_3 + M_5$$



$$C_{21} = M_2 - M_4$$



$$C_{22} = M_1 - M_2 + M_3 + M_6$$

Wikipedia article for Strassen's algorithm

$$M_1 = (A_{11} + A_{22})(B_{11} + B_{12})$$

$$M_5 = (A_{11} + A_{12})B_{22}$$

$$M_4 = A_{22}(B_{21} - B_{11})$$

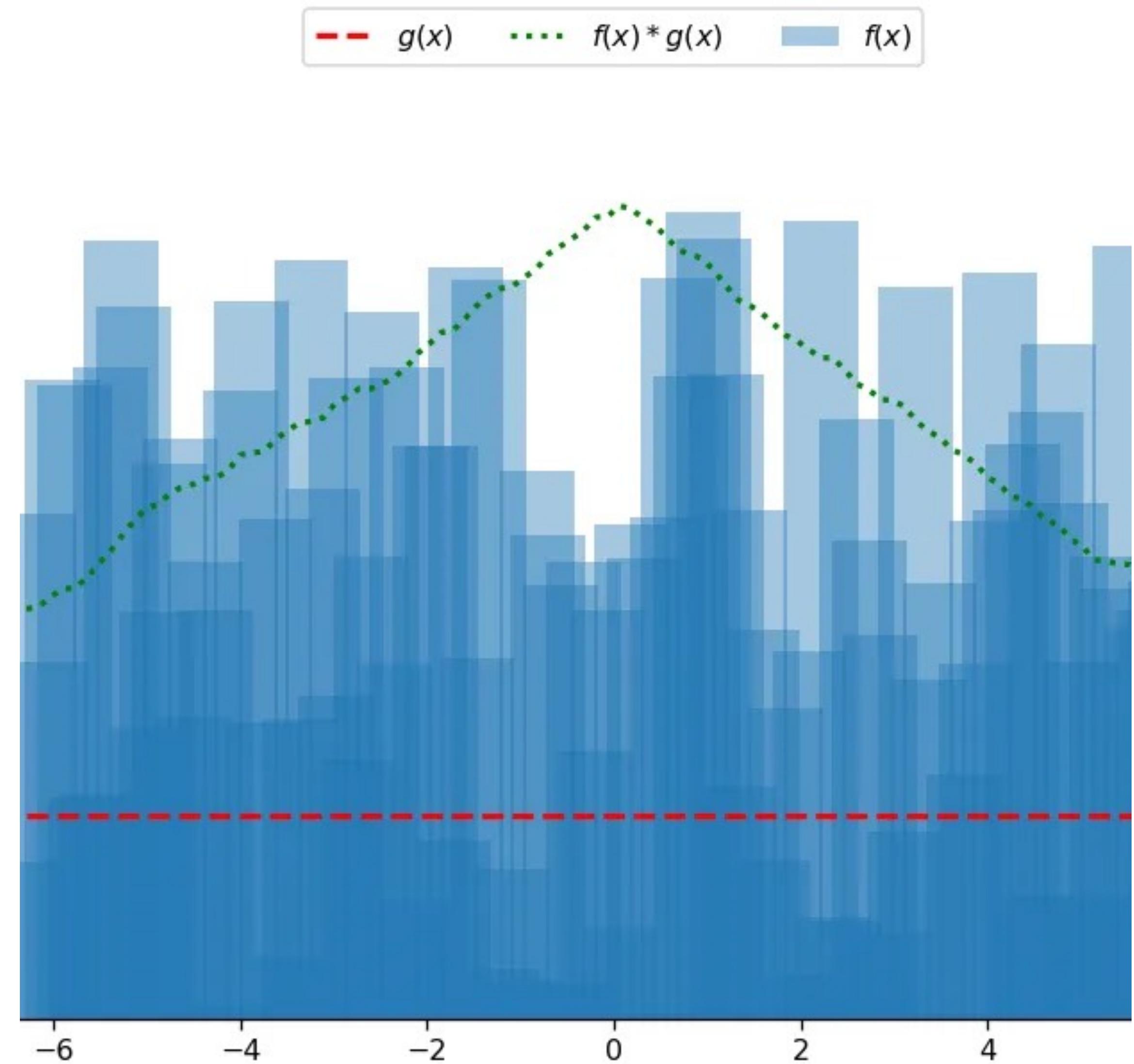
8 additions

Strassen's algorithm details

- Best for matrices of size $2^m \times 2^m$. Pad the matrix with zeroes until it is.
- Strassen's has 18 mini-additions. Only beneficial if $n \geq 32$.
 - For smaller matrices, use $O(n^3)$ algorithm.
 - Still a base case for the recursive definition. Only adjust $O(\cdot)$ constants.
- Is there an even cleverer decomposition into fewer mini-multiplications?
 - Not for dividing into $n/2 \times n/2$ mini-matrices
 - Other divisions plus clever tricks have gotten algorithms down to $O(n^{2.371339})$ [May 2024]
 - **Major open question:** $O(n^{2+\epsilon})$ time algorithm possible for all $\epsilon > 0$.

Convolution

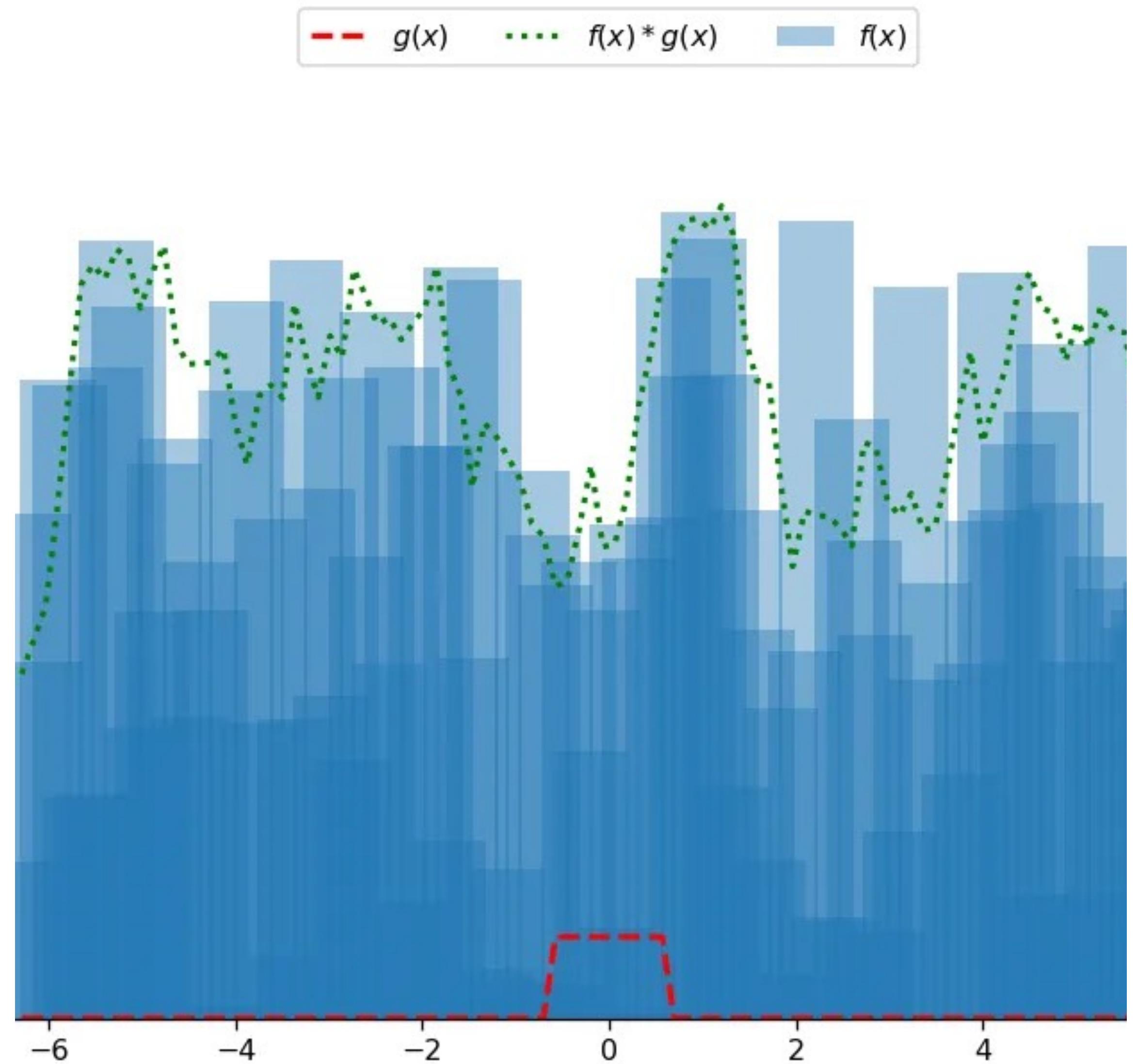
- An algorithm for combining two signals to form a third signal
- Shows up most commonly now in *convolution neural networks*
- $(f * g)_k := \sum_{j=0}^n f_j \cdot g_{k-j}$ vs
- $(f * g)(x) = \int_{-\infty}^{\infty} f(\tau)g(x - \tau)d\tau$
 - This is the area under the curve f with weights defined by g
 - Let's you smooth out the curve f by picking g



Source: Medium post by TDS archive.

Convolution

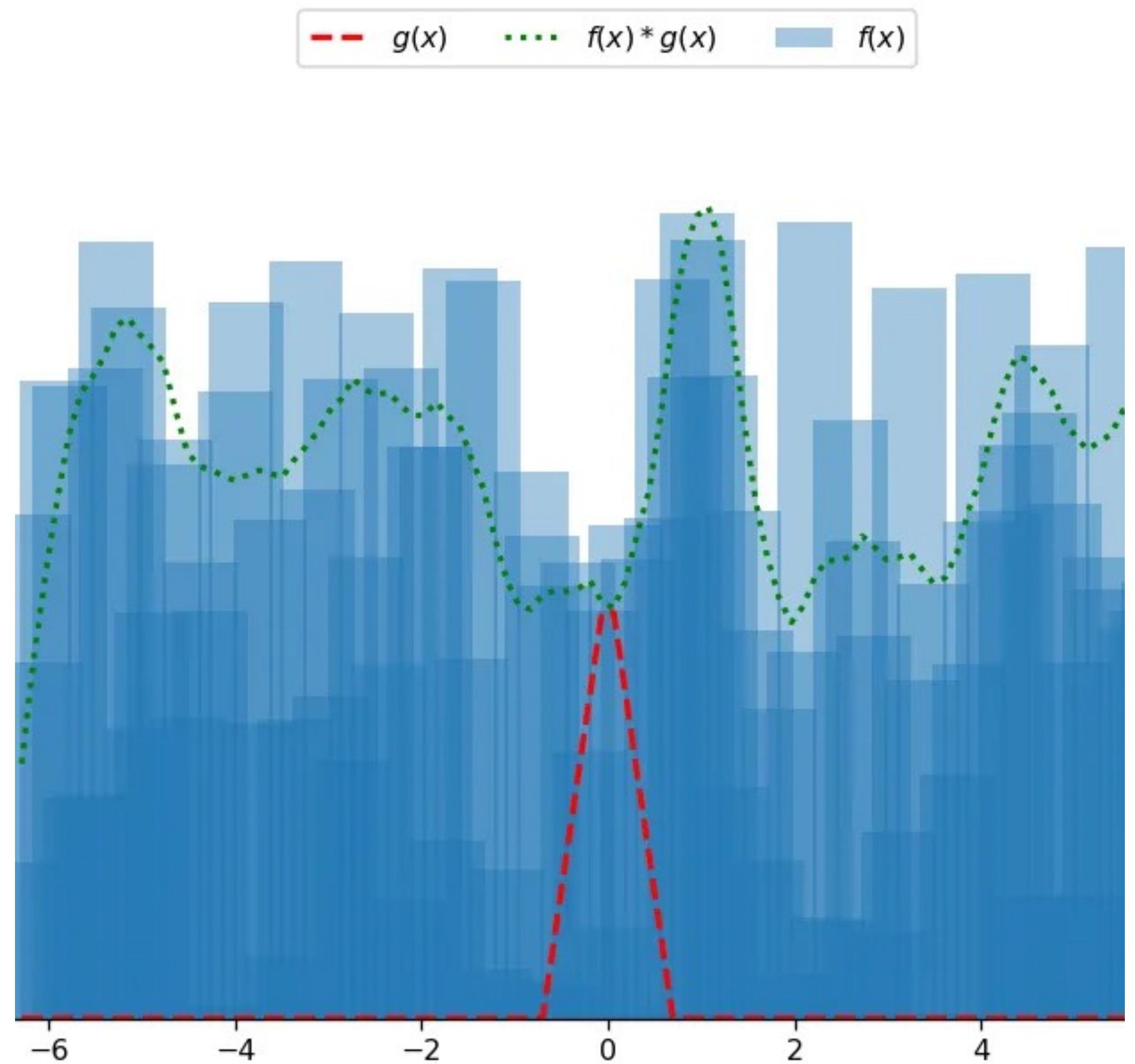
- An algorithm for combining two signals to form a third signal
- Shows up most commonly now in *convolution neural networks*
- $(f * g)_k := \sum_{j=0}^n f_j \cdot g_{k-j}$ vs
- $(f * g)(x) = \int_{-\infty}^{\infty} f(\tau)g(x - \tau)d\tau$
 - This is the area under the curve f with weights defined by g
 - Let's you smooth out the curve f by picking g



Source: Medium post by TDS archive.

Convolution

- An algorithm for combining two signals to form a third signal
- Shows up most commonly now in *convolution neural networks*
- $(f * g)_k := \sum_{j=0}^n f_j \cdot g_{k-j}$ vs
- $(f * g)(x) = \int_{-\infty}^{\infty} f(\tau)g(x - \tau)d\tau$
 - This is the area under the curve f with weights defined by g
 - Let's you smooth out the curve f by picking g



Source: Medium post by TDS archive.

Convolution

Gaussian blurring and edge detection

- Ex. We can also apply a 2D version of convolution for image processing

Source: Stanford 315b lectures

Convolution

- Filtering signals (low-pass, high-pass)
 - Convolve with a signal to filter out certain frequencies
- Audio effects (reverb, echo, suppression)
- Image processing
- And more!

Median

- **Input:** Input list $\vec{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ for n odd.
- **Output:** The median element i.e. $y_{(n+1)/2}$ when $\vec{y} = \text{sort}(\vec{x})$.
- An upper bound for the runtime is $O(n \log n)$ from sorting + selecting.
- Can we do better? Could we achieve $O(n)$?

Median

- Consider a divide and conquer algorithm for median
- What would the recurrence relation have to be for $T(n) = O(n)$?
- **Case 1:** $T(n) = 2T(n/2) + O(1)$
 - Challenge is to split the problem X into two halves with $O(1)$ compute
 - And to “stitch” the solutions to the two subproblems together in $O(1)$ compute
- **Case 2:** $T(n) = T(n/2) + O(n)$
 - With $O(n)$ time, we can make a constant number of passes through the list X
 - After constant number of passes, we need to find a sublist X' of size $n/2$ which must contain the median
 - Then we recurse on the sublist X'

Selection

- Let's define a more general problem called "Selection"
 - **Input:** pair $(\vec{x}, k) \in \mathbb{R}^n \times [n]$.
 - **Output:** The k -th element y_k when $\vec{y} = \text{sort}(\vec{x})$.
- Generalizes the median problem

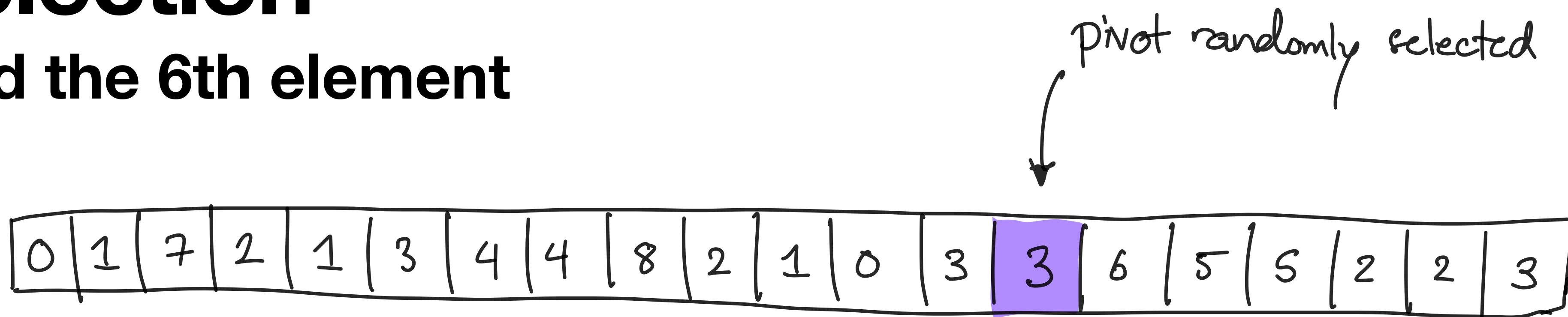
Selection

Find the 6th element

0	1	7	2	1	3	4	4	8	2	1	0	3	3	6	5	5	2	2	3
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

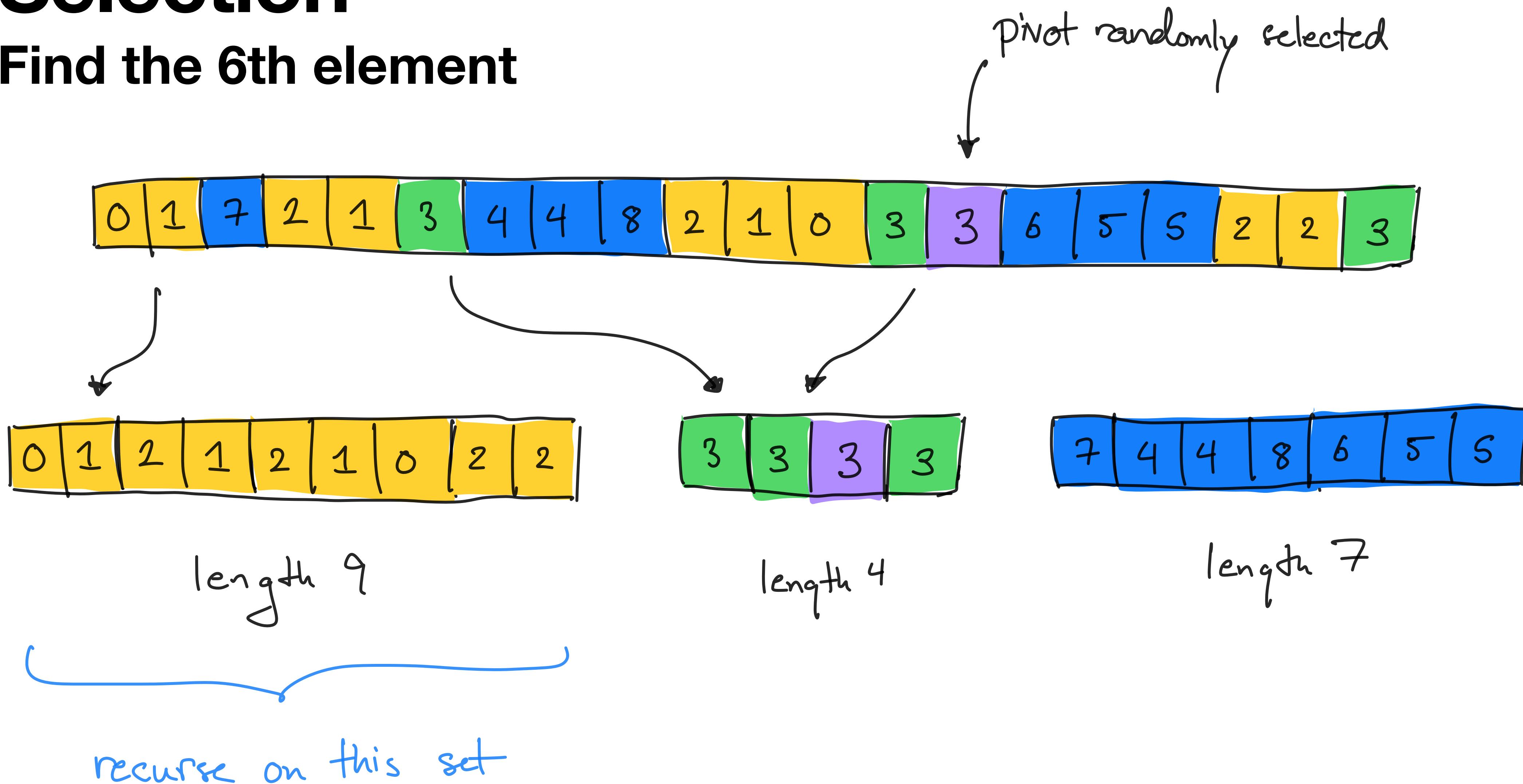
Selection

Find the 6th element



Selection

Find the 6th element



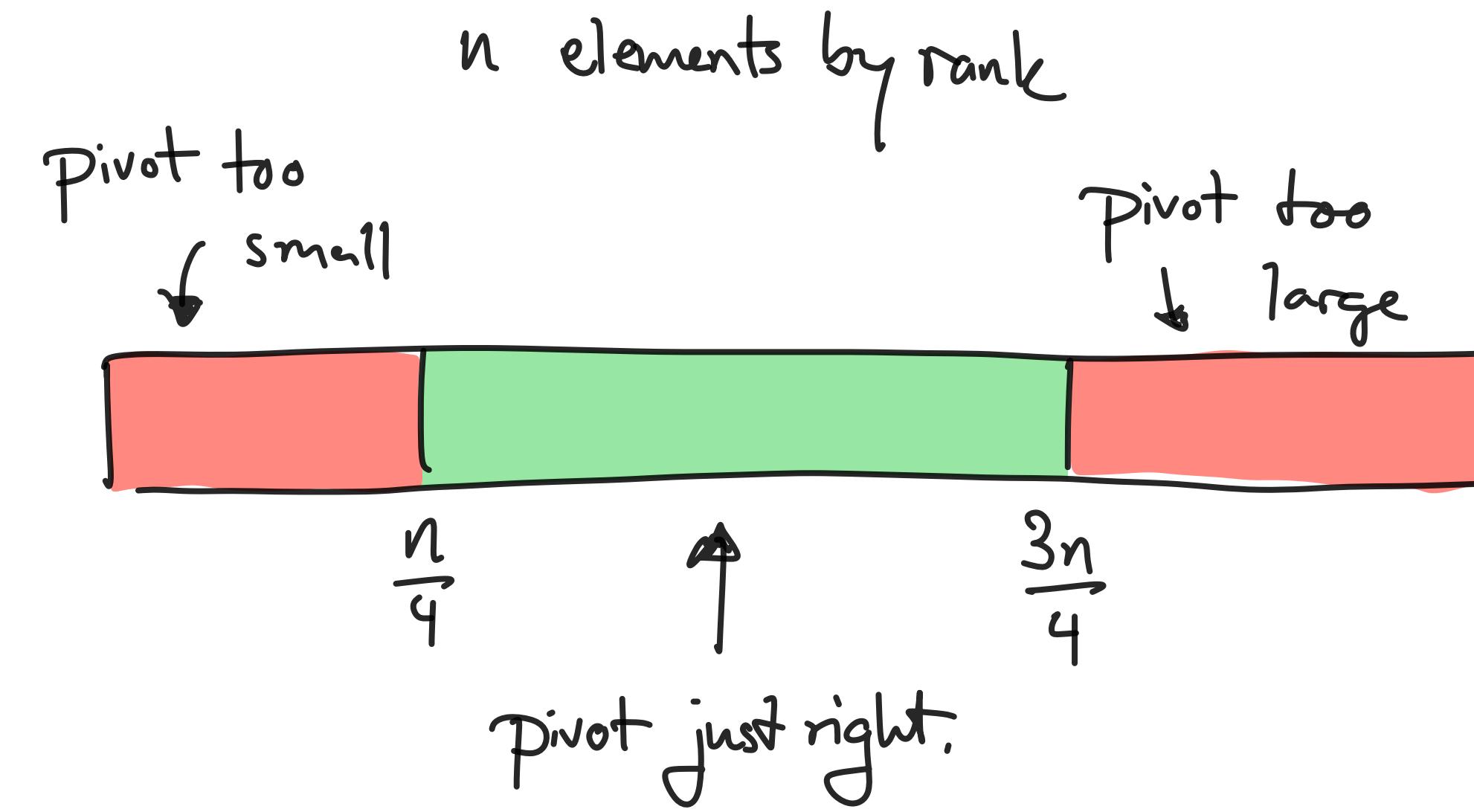
Selection

- **Recursive algorithm** $\text{Selection}(X, k)$:
 - Randomly sample j from $[n]$. Call x_j the “**pivot**”.
 - Filter X into X_L , X_E , and X_R based on if $x_i < x_j$, $x_i = x_j$, or $x_i > x_j$.
 - If $|X_L| \geq k$, recursively output $\text{Selection}(X_L, k)$.
 - Else if, $|X_L| + |X_E| \geq k$, output x_j .
 - Else, recursively output $\text{Selection}(X_R, k - |X_L| - |X_E|)$.

Runtime analysis

- In order to apply the master theorem, we would need to argue that each recursive call was reducing the input size from n to n/b for $b > 1$
 - $T(n) = T(n/b) + cn \implies T(n) = \frac{c}{1 - 1/b}n$
- However, each call may not reduce the size from n to n/b
- Depends on how close the randomly chosen x_j is to the middle
 - If pivot x_j was the largest element, then $|X_L| = n - 1$, $|X_E| = 1$, and $|X_R| = 0$.
 - Decreases instance size from n to $n - 1$.
 - Fortunately, the probability this occurs is $1/n$.

Runtime analysis



- **Amortized analysis:**
 - If pivot x_j is the ℓ -th element, then the next problem is of size $\leq \max\{\ell, n - \ell\}$.
 - With probability $\geq 1/2$, pivot x_j is the ℓ -th element for $\ell \in \{n/4, \dots, 3n/4\}$.
 - The expected compute in reducing from n -sized instance to a $3n/4$ -sized instance is $O(n)$.
 - Total **expected** runtime: $T(n) = T(3n/4) + O(n) \implies T(n) = O(n)$.

Runtime analysis

- **Amortized analysis:**

- If pivot x_j is the ℓ -th element, then the next problem is of size $\leq \max\{\ell, n - \ell\}$.
- With probability $\geq 1/2$, pivot x_j is the ℓ -th element for $\ell \in \{n/4, \dots, 3n/4\}$.
- The expected compute in reducing from n -sized instance to a $3n/4$ -sized instance is $O(n)$.
 - $\geq 1/2$ probability, shrinks in 1 reduction.
 - $\geq 1/4$ probability, shrinks in 2 reductions.
 - ... $\geq 1/2^j$ probability, shrinks in j reductions ...
- Expected compute is $\leq O(n) \cdot \left(\frac{1}{2} + \frac{1}{4} \cdot 2 + \frac{1}{8} \cdot 3 + \dots\right) = O(n) \cdot 2$
- Total **expected** runtime: $T(n) = T(3n/4) + O(n) \implies T(n) = O(n)$.