Lecture 9

Multiplication algorithms
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Analysis divide and conquer runtimes

The master theorem

* For solving recursive equations of the form

I(n)=a-T (%) + f(n)and T( < b) = O(1)

» Different cases based on how f(n), a, and b compare:



Analysis divide and conquer runtimes

The master theorem

* For solving recursive equations of the form

In)=a-T (%)+0(nk) and 7( < b) = O(1)

» Different cases based on how f(n), a, and b compare:
e Ifa < bX, then T(n) = O(n*)
. If a = b*, then T(n) = O(n*log n)

e Ifa > b*, then T(n) = O(n'°%%)



Proof of the master theorem

* Proof strategy:

* Due to recursion, the problem has a tree like structure
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» Calculate the amount of work done by the “conquer” step at each level

 Count how many levels of computation there are
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Proof the master theorem
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Proof the master theorem
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Analysis divide and conquer runtimes

The master theorem

* For solving recursive equations of the form

In)=a-T (%)+O(nk) and 7( < b) = O(1)

» Different cases based on how f(n), a, and b compare:
. If a < b¥, then I'(n) = O(I/lk) & most o{ the Cowpu s i The (af3w+ Conguen s\—r_ly
° If 0 = bk, then T(n) — O(Hk log n) <— Q&d,\ (eve\ l/\aS Qa C.Q'W\W\U/\SLM'O.t OLW\W\DU\V\.‘\' G-F CUVV\L)\At

e Ifa > bk, then T(n) = 0(n10gba) & the Numben 0{'\ leowes dowtinaly Hhe Cow«l)u‘\'n'ﬁov\,
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Matrix, integer, and (some)
polynomial multiplication



Integer multiplication

e Input: Two n-bit binary numbers x,y € {0,...,2" — 1}

e Output: A 2n-bit binary number
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. Gradeschool multiplication algorithm takes O(n?) time
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The Karatsuba method
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The Karatsuba method
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T(n) = 3T (g) + 0(n) = T(n) = 0(n'°e°) = O(n'>?%)



Improving integer multiplication

* Fast integer multiplication is used in high-precision arithmetic

 Storing a number to n-bits of precision is equal to 27" precision

o Karatsuba’s algorithm is not the fastest

» Fastest is O(n log n) based on the fast Fourier transform (not covered)

 These are galactic algorithms (not useful in practice)
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Matrix multiplication

e Input: Two matrices A, B € R™"

e Output: The matrix AB € |
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Trivial algorithm for matrix multiplication

e Algorithm:
o |nitialize n X n array C as zeroes

 Forie[n],je(nl,keln], C;< Ci+Ay- B

 Return C.

3

 Runtime: n- multiplications + n> additions

e Can we improve this with divide and conquer?
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Matrix multiplication naturally decomposes

 Matrix multiplication of matrices p s oo ok commit
An Al?_ B \1 ’B 1Z AI\B||+ AI9rB2-| AH(BI?. + A,{Bn
Au ALZ le BLZ Al\Bll+A2?.Bz| AZ\(B\‘L"' Azszzz
| |

 Divide and conquer:

« Decompose into 8 matrix multiplications of n/2 X n/2 matrices and 4 matrix additions of

n/2 X n/2 matrices

n n : log, 8 3a.=8
, I(n) =38T Y + 4 Y —> T(n) = O(n 2)=0(n)b-—-1
= A
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Strassen’s divide and conquer (1968)

 Can we decrease the number of mini-multiplications at the cost of increasing the
number of mini-additions??

e |f we were to somehow decrease to 7 multiplications but 18 additions ...
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e But how do we achieve this decrease?
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A clever decomposition
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A clever decomposition




A clever decomposition
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A clever decomposition
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A clever decomposition

We con odst Hrese. dageams. . &
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Strassen’s algorithm details

» Best for matrices of size 2" X 2. Pad the matrix with zeroes until it is.
 Strassen’s has 18 mini-additions. Only beneficial if n > 32.
. For smaller matrices, use O(n>) algorithm.

« Still a base case for the recursive definition. Only adjust O( - ) constants.

* |s there an even cleverer decomposition into fewer mini-multiplications?
* Not for dividing into n/2 X n/2 mini-matrices
» QOther divisions plus clever tricks have gotten algorithms down to O(n2'371339) [May 2024]

. Major open question: O(n**¢) time algorithm possible for all € > 0.
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Convolution i e i

* An algorithm for combining two signals to form
a third signal

 Shows up most commonly now in convolution
neural networks

(f + 8 = Z]ﬁ * 8k—j VS
j=0

. (= gx) = J f)glx — 7)dr

* This is the area under the curve f with
weights defined by ¢

— —4 —2 0 2 4

» Let’s you smooth out the curve f by picking g

Source: Medium post by TDS archive.
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Convolution g a7 g

* An algorithm for combining two signals to form
a third signal

 Shows up most commonly now in convolution
neural networks

(f + 8 = Z]ﬁ * 8k—j VS
j=0

. (= gx) = J f)glx — 7)dr

* This is the area under the curve f with
weights defined by ¢

—0 —4 =2 0 2 4

» Let’s you smooth out the curve f by picking g

Source: Medium post by TDS archive.
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Convolution 3 e

* An algorithm for combining two signals to form
a third signal

 Shows up most commonly now in convolution
neural networks

(f + 8 = Z]ﬁ * 8k—j VS
j=0

. (= gx) = J f)glx — 7)dr

* This is the area under the curve f with
weights defined by ¢

. —4 —~2 0 2 4

» Let’s you smooth out the curve f by picking g

Source: Medium post by TDS archive.
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Convolution

Gaussian blurring and edge detection

 EX. We can also apply a 2D version of convolution for image processing
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Convolution

* Filtering signals (low-pass, high-pass)

 Convolve with a signal to filter out certain frequencies
* Audio effects (reverb, echo, suppression)
* |mage processing

e And more!
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Median

o Input: Input list X = (x{, X5, ..., x,) € R" for n odd.

» Output: The median element i.e. y,, 1), When y = sort(X).

» An upper bound for the runtime is O(n log n) from sorting + selecting.

» Can we do better? Could we achieve O(n)?
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Median

* Consider a divide and conqguer algorithm for median
« What would the recurrence relation have to be for 7(n) = O(n)?
e Case1:T(n) =2T(n/2) + O(1)
« Challenge is to split the problem X into two halves with O(1) compute
» And to “stitch” the solutions to the two subproblems together in O(1) compute
e Case2: T(n) =1T(n/2)+ O(n)
« With O(n) time, we can make a constant number of passes through the list X
 After constant number of passes, we need to find a sublist X’ of size n/2 which must contain the median

« Then we recurse on the sublist X’
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Selection

* |et’s define a more general problem called “Selection”

e Input: pair (X, k) € R" X [n].
+ Output: The k-th element y, when y = sort(X).

e (Generalizes the median problem
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Selection
Find the 6th element
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Selection
Find the 6th element
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Selection
Find the 6th element
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Selection

» Recursive algorithm Selection(X, k):

. Randomly sample j from |n]. Call x; the “pivot”.

o Filter X into X;, Xz, and X, based on if x; < Xj, X; = X;, Or X; > X;.

. If | X; | > k, recursively output Selection(X;, k).

. Elseif, [ X, |+ |Xg| = &, output x.

» Else, recursively output Selection(Xp, k — | X; | — | Xz |).
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Runtime analysis

* |n order to apply the master theorem, we would need to argue that each recursive call was reducing
the input size from n to n/b forb > 1

. I'(n)=Tn/b)+cn = T(n) = - l/bn

« However, each call may not reduce the size from n to n/b

« Depends on how close the randomly chosen X; Is to the middle

+ If pivot x; was the largest element, then | X, | =n — 1,|Xg| = 1,and | Xi| = 0.

e Decreases instance size fromnton — 1.

 Fortunately, the probability this occurs is 1/n.
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- - P
Runtime analysis g o L Torme

« Amortized analysis: Pot dus} n'é\»*“.

o |f pivot X; is the £-th element, then the next problem is of size
<max{f,n—17}.

» With probability > 1/2, pivot x; is the £-th element for £ € {n/4,...,3n/4}.

« The expected compute in reducing from n-sized instance to a 3n/4-sized
instance is O(n).

 Total expected runtime: T(n) = T(3n/4) + O(n) —> T(n) = O(n).
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Runtime analysis

« Amortized analysis:

+ If pivot x; is the £-th element, then the next problem is of size < max{Z,n —¢}.
» With probability > 1/2, pivot x; is the £-th element for £ € {n/4,...,3n/4}.

» The expected compute in reducing from n-sized instance to a 3n/4-sized instance is O(n).
« > 1/2 probability, shrinks in 1 reduction.
« > 1/4 probability, shrinks in 2 reductions.

e ... > 1/2 probability, shrinks in j reductions ...

1 1 1
. Expected computeis < O(n) - (2 | 2 2+§ 34+ ...)=0(n) -2
 Total expected runtime: T(n) = T(3n/4) + O(n) — T(n) = O(n).
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