
Chinmay Nirkhe | CSE 421 Winter 2026

Lecture 9
Multiplication algorithms

1

Analysis divide and conquer runtimes
The master theorem

• For solving recursive equations of the form 
 

 and

• Different cases based on how , and compare:

T(n) = a ⋅ T (n
b) + f(n) T(< b) = O(1)

f(n), a b

2

Analysis divide and conquer runtimes
The master theorem

• For solving recursive equations of the form 
 

 and

• Different cases based on how , and compare:

• If , then

• If , then

• If , then

T(n) = a ⋅ T (n
b)+O(nk) T(< b) = O(1)

f(n), a b

a < bk T(n) = O(nk)

a = bk T(n) = O(nk log n)

a > bk T(n) = O(nlogb a)
3

Proof of the master theorem

• Proof strategy:

• Due to recursion, the problem has a tree like structure

• Calculate the amount of work done by the “conquer” step at each level

• Count how many levels of computation there are

4

Proof the master theorem

• Let so d = ⌈logb n⌉ n ≤ bd

5

Proof the master theorem

• Let so d = ⌈logb n⌉ n ≤ bd

6

Analysis divide and conquer runtimes
The master theorem

• For solving recursive equations of the form 
 

 and

• Different cases based on how , and compare:

• If , then

• If , then

• If , then

T(n) = a ⋅ T (n
b)+O(nk) T(< b) = O(1)

f(n), a b

a < bk T(n) = O(nk)

a = bk T(n) = O(nk log n)

a > bk T(n) = O(nlogb a)
7

Matrix, integer, and (some)
polynomial multiplication

8

Integer multiplication

• Input: Two -bit binary numbers

• Output: A -bit binary number

• Gradeschool multiplication algorithm takes time

n x, y ∈ {0,…,2n − 1}

2n

O(n2)

9

The Karatsuba method

T(n) = 4T (n
2) + O(n) ⟹ T(n) = O(nlog2 4) = O(n2)

10

The Karatsuba method

T(n) = 3T (n
2) + O(n) ⟹ T(n) = O(nlog2 3) = O(n1.58)

11

Improving integer multiplication

• Fast integer multiplication is used in high-precision arithmetic

• Storing a number to -bits of precision is equal to precision

• Karatsuba’s algorithm is not the fastest

• Fastest is based on the fast Fourier transform (not covered)

• These are galactic algorithms (not useful in practice)

n 2−n

O(n log n)

12

Matrix multiplication

• Input: Two matrices

• Output: The matrix

A, B ∈ ℝn×n

AB ∈ ℝn×n

13

Trivial algorithm for matrix multiplication

• Algorithm:

• Initialize array as zeroes

• For ,

• Return .

• Runtime: multiplications + additions

• Can we improve this with divide and conquer?

n × n C

i ∈ [n], j ∈ [n], k ∈ [n] Cij ← Cij + Aik ⋅ Bkj

C

n3 n3

14

Matrix multiplication naturally decomposes

• Matrix multiplication of matrices 
 
 
 
 
 

• Divide and conquer:

• Decompose into 8 matrix multiplications of matrices and 4 matrix additions of
 matrices

•

n/2 × n/2
n/2 × n/2

T(n) = 8T (n
2) + 4 (n

2)
2

⟹ T(n) = O(nlog2 8) = O(n3)

15

Strassen’s divide and conquer (1968)

• Can we decrease the number of mini-multiplications at the cost of increasing the
number of mini-additions?

• If we were to somehow decrease to 7 multiplications but 18 additions …

•

• But how do we achieve this decrease?

• Find repeated terms.

T(n) = 7T (n
2) +

18
4

n2 ⟹ T(n) =
18
4

⋅ O(nlog2 7) = O(n2.8074)

16

A clever decomposition

17

A clever decomposition

18

A clever decomposition

19

A clever decomposition

20

A clever decomposition

21

A clever decomposition

22

Wikipedia article for Strassen’s algorithm

Strassen’s algorithm details

• Best for matrices of size . Pad the matrix with zeroes until it is.

• Strassen’s has 18 mini-additions. Only beneficial if .

• For smaller matrices, use algorithm.

• Still a base case for the recursive definition. Only adjust constants.

• Is there an even cleverer decomposition into fewer mini-multiplications?

• Not for dividing into mini-matrices

• Other divisions plus clever tricks have gotten algorithms down to [May 2024]

• Major open question: time algorithm possible for all .

2m × 2m

n ≥ 32

O(n3)

O(⋅)

n/2 × n/2

O(n2.371339)

O(n2+ϵ) ϵ > 0

23

• An algorithm for combining two signals to form
a third signal

• Shows up most commonly now in convolution
neural networks

• vs

•

• This is the area under the curve with
weights defined by

• Let’s you smooth out the curve by picking

(f * g)k :=
n

∑
j=0

fj ⋅ gk−j

(f * g)(x) = ∫
∞

−∞
f(τ)g(x − τ)dτ

f
g

f g
Source: Medium post by TDS archive.

Convolution

24

• An algorithm for combining two signals to form
a third signal

• Shows up most commonly now in convolution
neural networks

• vs

•

• This is the area under the curve with
weights defined by

• Let’s you smooth out the curve by picking

(f * g)k :=
n

∑
j=0

fj ⋅ gk−j

(f * g)(x) = ∫
∞

−∞
f(τ)g(x − τ)dτ

f
g

f g
Source: Medium post by TDS archive.

Convolution

25

• An algorithm for combining two signals to form
a third signal

• Shows up most commonly now in convolution
neural networks

• vs

•

• This is the area under the curve with
weights defined by

• Let’s you smooth out the curve by picking

(f * g)k :=
n

∑
j=0

fj ⋅ gk−j

(f * g)(x) = ∫
∞

−∞
f(τ)g(x − τ)dτ

f
g

f g
Source: Medium post by TDS archive.

Convolution

26

Convolution
Gaussian blurring and edge detection

• Ex. We can also apply a 2D version of convolution for image processing

27

Source: Stanford 315b lectures

Convolution

• Filtering signals (low-pass, high-pass)

• Convolve with a signal to filter out certain frequencies

• Audio effects (reverb, echo, suppression)

• Image processing

• And more!

28

Median

• Input: Input list for odd.

• Output: The median element i.e. when .

• An upper bound for the runtime is from sorting + selecting.

• Can we do better? Could we achieve ?

⃗x = (x1, x2, …, xn) ∈ ℝn n

y(n+1)/2 ⃗y = sort(⃗x)

O(n log n)

O(n)

29

Median

• Consider a divide and conquer algorithm for median

• What would the recurrence relation have to be for ?

• Case 1:

• Challenge is to split the problem into two halves with compute

• And to “stitch” the solutions to the two subproblems together in compute

• Case 2:

• With time, we can make a constant number of passes through the list

• After constant number of passes, we need to find a sublist of size which must contain the median

• Then we recurse on the sublist

T(n) = O(n)

T(n) = 2T(n/2) + O(1)

X O(1)

O(1)

T(n) = T(n/2) + O(n)

O(n) X

X′￼ n/2

X′￼

30

Selection

• Let’s define a more general problem called “Selection”

• Input: pair .

• Output: The -th element when .

• Generalizes the median problem

(⃗x, k) ∈ ℝn × [n]

k yk ⃗y = sort(⃗x)

31

Selection
Find the 6th element

32

Selection
Find the 6th element

33

Selection
Find the 6th element

34

Selection

• Recursive algorithm :

• Randomly sample from . Call the “pivot”.

• Filter into , , and based on if , , or .

• If , recursively output .

• Else if, , output .

• Else, recursively output .

Selection(X, k)

j [n] xj

X XL XE XR xi < xj xi = xj xi > xj

|XL | ≥ k Selection(XL, k)

|XL | + |XE | ≥ k xj

Selection(XR, k − |XL | − |XE |)
35

Runtime analysis

• In order to apply the master theorem, we would need to argue that each recursive call was reducing
the input size from to for

•

• However, each call may not reduce the size from to

• Depends on how close the randomly chosen is to the middle

• If pivot was the largest element, then , and .

• Decreases instance size from to .

• Fortunately, the probability this occurs is .

n n/b b > 1

T(n) = T(n/b) + cn ⟹ T(n) =
c

1 − 1/b
n

n n/b

xj

xj |XL | = n − 1, |XE | = 1 |XR | = 0

n n − 1

1/n

36

Runtime analysis

• Amortized analysis:

• If pivot is the -th element, then the next problem is of size
.

• With probability , pivot is the -th element for .

• The expected compute in reducing from -sized instance to a -sized
instance is .

• Total expected runtime: .

xj ℓ
≤ max{ℓ, n − ℓ}

≥ 1/2 xj ℓ ℓ ∈ {n/4,…,3n/4}

n 3n/4
O(n)

T(n) = T(3n/4) + O(n) ⟹ T(n) = O(n)

37

Runtime analysis

• Amortized analysis:

• If pivot is the -th element, then the next problem is of size .

• With probability , pivot is the -th element for .

• The expected compute in reducing from -sized instance to a -sized instance is .

• probability, shrinks in 1 reduction.

• probability, shrinks in 2 reductions.

• … probability, shrinks in reductions …

• Expected compute is

• Total expected runtime: .

xj ℓ ≤ max{ℓ, n − ℓ}

≥ 1/2 xj ℓ ℓ ∈ {n/4,…,3n/4}

n 3n/4 O(n)

≥ 1/2

≥ 1/4

≥ 1/2j j

≤ O(n) ⋅ (
1
2

+
1
4

⋅ 2 +
1
8

⋅ 3 + …) = O(n) ⋅ 2

T(n) = T(3n/4) + O(n) ⟹ T(n) = O(n)

38

