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Lecture 8
Divide and conquer
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Midterm (logistics)

• Mon Feb 2nd 5:30 - 7:20 pm in BAG 131


• Lecture 11 (next Friday) will be 50% a review session


• Contents covered: Everything through Divide and Conquer algorithms


• Since we won’t any HW problems on D&C before the midterm, exam questions will only be conceptual 
on D&C


• Exam consists of multiple choice questions and long form


• Long form are similar to HW long forms but tailored for less writing


• So read instructions carefully and only answer what is asked of you


• Practice midterm will be released sometime this weekend


• Poll: Cheat sheet vs. repeat problem

2



MST applications
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Applications of MST

• Network design — minimal connectivity for telephone, electrical, cable, internet networks


• Approximation algorithms for computational problems - traveling problem, Steiner trees


• Indirect applications


• Max bottleneck paths


• LDPC error correcting codes


• Image restoration under Renyí entropy


• Reducing data storage in sequencing amino acids


• Modeling local particle interaction in turbulence flows


• Autoconfig protocol for Ethernet bridging to avoid network cycles
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-clustering of data pointsk
Maximum distance clustering

• Input: A set  of  elements, a metric , 
and 


• Metric satisfies ,  


• and triangle inequality 


• Output: A clustering function  maximizing 
 

, 

 
the minimum distance between the clusters

U n d : U2 → ℝ≥0
k ∈ ℕ

d(u, u) = 0 d(u, v) = d(v, u)

d(u, v) + d(v, w) ≥ d(u, w)

a : U → [k]

min
u,v∈U: a(u)≠a(v)

d(u, v)
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Kruskal’s based algorithm 

• Let  and  (all-to-all) with weight .


• Run Kruskal’s until  edges are added.


• Ensures that there are  trees in the forest.


• Assign a cluster for every tree.


• Alternatively, run any MST algorithm and delete the heaviest 
 edges from the output tree. 

V = U E = V2 w(e) = d(e)

n − k

k

k − 1
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Maximum distance clustering optimality

• Let  be the dist. between clustering  generated by Kruskal’s


• By our alg. design,  for  in the same cluster: 
.


• Consider a different clustering 


• There exist two points such that  but .


• Then the max spacing between clusters of  is at most 
.


• So the max spacing of  is  the max spacing of . So  is 
optimal.

d* a

d* ≥ d(u, v) u, v
a(u) = a(v)

b : U → [k]

a(u) = a(v) b(u) ≠ b(v)

b
d(u, v) ≤ d*

b ≤ a a
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Divide and conquer
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Principles of divide and conquer

• Identity a division of the problem into  self-similar parts of size 


• Recursively solve each subpart of the problem


• Stitch the solutions from each subpart together


• Runtime is defined by the following recursively defined formula: 
 

 and 

a n/b

T(n) = a ⋅ T ( n
b ) + f(n) T( < b) = O(1)
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Examples of divide and conquer

• Mergesort, Quicksort


• Binary search


• Euclidean closest pair


• Rank selection, Median finding
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Binary search for roots of a function

• Input: Description of 


• a continuous , 


•  such that 


• and 

f : ℝ → ℝ

a < b ∈ ℝ f(a) ≤ 0 < f(b)

ϵ > 0
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Binary search for roots of a function

• Input: Description of 


• a continuous , 


•  such that 


• and 


• Output: A value  such that 
 for some .

f : ℝ → ℝ

a < b ∈ ℝ f(a) ≤ 0 < f(b)

ϵ > 0

x ∈ [a, b]
f(x′￼) = 0 |x′￼− x | ≤ ϵ
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Bisection method

• Intermediate value theorem (IVT): If  and  is continuous, 
there exists an  such that .


• Proof by picture:

f(0) = 0, f(1) = 1 f
x ∈ (0,1) f(x) = 1/2
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Bisection method

• Algorithm : 

• Let .


• If , return .


• Let .


• If , return . 


• Else, return .

g(x, y)

m ← (x + y)/2

y − x ≤ 2ϵ m

z ← f (m)

z > 0 g (x, m)

g (m, y)
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• Claim: If , 
then  outputs an  such that 

.


• Proof:


• Base case, follows from IVT.


• Otherwise,

f(x) ≤ 0 < f(y) for x < y
g(x, y) m

f(m′￼) = 0 for |m′￼− m | ≤ ϵ



Runtime analysis
Binary search problem

• Therefore, running  will solve the bisection problem.


• Each iteration of  is on an interval of half the length 


• starting from  until the length is 


• Therefore,  recursions.


• Each recursion costs  arithmetic operations plus  query to .


• Runtime:  queries to .

g(a, b)

g

b − a ≤ 2ϵ

log2 ( b − a
2ϵ )
O(1) 1 f

O(log(b − a) + log(1/ϵ)) f
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Runtime analysis

• Simple version of generalized runtime analysis.


• Let .


• Then,  and  for number of queries.


• Solves to .

k = (b − a)/(2ϵ)

T(k) = T(k/2) + 1 T(1) = 0

T(k) = ⌈log2 k⌉ + 1
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Another classic divide and conquer problem
Mergesort

• To sort an array of  entries, recursively 
sort the first half and recursively sort the 
second half. Then merge the two sorted 
lists.


• Merging two sorted arrays takes  time 
as we only have to compare current 
elements as we iterate through both arrays


• Recursive time equation: 
 with .


• Solution: 

n

O(n)

T(n) ≤ 2T(n/2) + O(n) T(1) = 0

T(n) ≤ O(n log n)
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Euclidean closest pair

• Input: A sequence of  points 


• Find: The pair  minimizing .


• Brute force algorithm: Try all pairs.  time.


• Is there a better algorithm for small ?


• In 1D for example, we can sort and then compare nearest neighbors for 
.


• Can we do better?

n p1, …, pn ∈ ℝd

pi, pj ∥pi − pj∥

O(n2d)

d

O(n log n)
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2D Euclidean closest pair

• Sorting on first coordinate will not work


• No single direction for sorting guarantees success


• Divide and conquer algorithm: 

• Need to figure out a way to subdivide the problem


• Then build solution from best solutions to both 
halves. This will require extra processing
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Split across -coordinate anywaysx

• Let’s split according to -coordinate 
anyways


• Let  be the median -coordinate


• Divide the set into points 
 and 


• Let  be the minimum of the two 
solutions

x

m x

{p : p1 ≤ m} {p : p > m}

δ
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The “conquer” aspect of the algorithm

• We only need to worry about pairs that 
are both split by the median and  
distance apart  

• During “conquer” step, only need to 
look at vertices in the -width band


• Within the band, only need to 
compare points with -coordinates 
that differ by 

< δ

δ

y
< δ
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Close-up analysis
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Close-up analysis
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Close-up analysis
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Close-up analysis
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The full conquer subroutine

30

• Let  be the set of points in band. 


• Sort the points in  by -coordinate


• For each point , compare  to 
the 8 points before and 8 points after 

 in the sorting.


• By analysis, this checks all possible 
pairs of distance .

M

M y

a ∈ M a

a

< δ



Divide and conquer algorithm

• Divide step: 

• Compute median  and divide into two subproblems


• Recursively calculate shortest distance for subproblems


• Conquer step:


• Compute the set of points in the band 


• Sort  by -coordinate


• Compare points in sorted  with the next 8 points and update if closer pair found.

m

M

M y

M
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Better divide and conquer algorithm

• Preprocessing: 

• Sort points according to -coordinate for list 


• Sort points according to -coordinate for list 


• Divide step (sorted lists , ): 

• Compute median  by -coordinate


• Divide  into . Filter  into  and .


• Recursively solve  and  problems for 


• Conquer step: 

• Filter  into the band  of -coordinates 


• Compare  to the next 8 points and update if closer point is found.

x X

y Y

X Y

m x

X XL, XR Y YL YR

(XL, YL) (XR, YR) δ

Y M x m ± δ

M
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Analysis divide and conquer runtimes
The master theorem

• For solving recursive equations of the form 
 

             and 


• Different cases based on how , and  compare:

T(n) = a ⋅ T ( n
b ) + f(n) T( < b) = O(1)

f(n), a b

33



Analysis divide and conquer runtimes
The master theorem

• For solving recursive equations of the form 
 

             and 


• Different cases based on how , and  compare:


• If , then 


• If , then 


• If , then 

T(n) = a ⋅ T ( n
b )+O(nk) T( < b) = O(1)

f(n), a b

a < bk T(n) = O(nk)

a = bk T(n) = O(nk log n)

a > bk T(n) = O(nlogb a)
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