
Chinmay Nirkhe | CSE 421 Winter 2026

Lecture 8
Divide and conquer

1

Midterm (logistics)

• Mon Feb 2nd 5:30 - 7:20 pm in BAG 131

• Lecture 11 (next Friday) will be 50% a review session

• Contents covered: Everything through Divide and Conquer algorithms

• Since we won’t any HW problems on D&C before the midterm, exam questions will only be conceptual
on D&C

• Exam consists of multiple choice questions and long form

• Long form are similar to HW long forms but tailored for less writing

• So read instructions carefully and only answer what is asked of you

• Practice midterm will be released sometime this weekend

• Poll: Cheat sheet vs. repeat problem

2

MST applications

3

Applications of MST

• Network design — minimal connectivity for telephone, electrical, cable, internet networks

• Approximation algorithms for computational problems - traveling problem, Steiner trees

• Indirect applications

• Max bottleneck paths

• LDPC error correcting codes

• Image restoration under Renyí entropy

• Reducing data storage in sequencing amino acids

• Modeling local particle interaction in turbulence flows

• Autoconfig protocol for Ethernet bridging to avoid network cycles

4

-clustering of data pointsk
Maximum distance clustering

• Input: A set of elements, a metric ,
and

• Metric satisfies ,

• and triangle inequality

• Output: A clustering function maximizing 
 

, 

 
the minimum distance between the clusters

U n d : U2 → ℝ≥0
k ∈ ℕ

d(u, u) = 0 d(u, v) = d(v, u)

d(u, v) + d(v, w) ≥ d(u, w)

a : U → [k]

min
u,v∈U: a(u)≠a(v)

d(u, v)

5

Kruskal’s based algorithm

• Let and (all-to-all) with weight .

• Run Kruskal’s until edges are added.

• Ensures that there are trees in the forest.

• Assign a cluster for every tree.

• Alternatively, run any MST algorithm and delete the heaviest
 edges from the output tree.

V = U E = V2 w(e) = d(e)

n − k

k

k − 1

6

Maximum distance clustering optimality

• Let be the dist. between clustering generated by Kruskal’s

• By our alg. design, for in the same cluster:
.

• Consider a different clustering

• There exist two points such that but .

• Then the max spacing between clusters of is at most
.

• So the max spacing of is the max spacing of . So is
optimal.

d* a

d* ≥ d(u, v) u, v
a(u) = a(v)

b : U → [k]

a(u) = a(v) b(u) ≠ b(v)

b
d(u, v) ≤ d*

b ≤ a a

7

Divide and conquer

8

Principles of divide and conquer

• Identity a division of the problem into self-similar parts of size

• Recursively solve each subpart of the problem

• Stitch the solutions from each subpart together

• Runtime is defined by the following recursively defined formula: 
 

 and

a n/b

T(n) = a ⋅ T (n
b) + f(n) T(< b) = O(1)

9

Examples of divide and conquer

• Mergesort, Quicksort

• Binary search

• Euclidean closest pair

• Rank selection, Median finding

10

Binary search for roots of a function

• Input: Description of

• a continuous ,

• such that

• and

f : ℝ → ℝ

a < b ∈ ℝ f(a) ≤ 0 < f(b)

ϵ > 0

11

Binary search for roots of a function

• Input: Description of

• a continuous ,

• such that

• and

• Output: A value such that
 for some .

f : ℝ → ℝ

a < b ∈ ℝ f(a) ≤ 0 < f(b)

ϵ > 0

x ∈ [a, b]
f(x′￼) = 0 |x′￼− x | ≤ ϵ

12

Bisection method

• Intermediate value theorem (IVT): If and is continuous,
there exists an such that .

• Proof by picture:

f(0) = 0, f(1) = 1 f
x ∈ (0,1) f(x) = 1/2

13

Bisection method

• Algorithm :

• Let .

• If , return .

• Let .

• If , return .

• Else, return .

g(x, y)

m ← (x + y)/2

y − x ≤ 2ϵ m

z ← f (m)

z > 0 g (x, m)

g (m, y)
14

• Claim: If ,
then outputs an such that

.

• Proof:

• Base case, follows from IVT.

• Otherwise,

f(x) ≤ 0 < f(y) for x < y
g(x, y) m

f(m′￼) = 0 for |m′￼− m | ≤ ϵ

Runtime analysis
Binary search problem

• Therefore, running will solve the bisection problem.

• Each iteration of is on an interval of half the length

• starting from until the length is

• Therefore, recursions.

• Each recursion costs arithmetic operations plus query to .

• Runtime: queries to .

g(a, b)

g

b − a ≤ 2ϵ

log2 (b − a
2ϵ)
O(1) 1 f

O(log(b − a) + log(1/ϵ)) f
15

Runtime analysis

• Simple version of generalized runtime analysis.

• Let .

• Then, and for number of queries.

• Solves to .

k = (b − a)/(2ϵ)

T(k) = T(k/2) + 1 T(1) = 0

T(k) = ⌈log2 k⌉ + 1

16

Another classic divide and conquer problem
Mergesort

• To sort an array of entries, recursively
sort the first half and recursively sort the
second half. Then merge the two sorted
lists.

• Merging two sorted arrays takes time
as we only have to compare current
elements as we iterate through both arrays

• Recursive time equation:
 with .

• Solution:

n

O(n)

T(n) ≤ 2T(n/2) + O(n) T(1) = 0

T(n) ≤ O(n log n)

17

Another classic divide and conquer problem
Mergesort

• To sort an array of entries, recursively
sort the first half and recursively sort the
second half. Then merge the two sorted
lists.

• Merging two sorted arrays takes time
as we only have to compare current
elements as we iterate through both arrays

• Recursive time equation:
 with .

• Solution:

n

O(n)

T(n) ≤ 2T(n/2) + O(n) T(1) = 0

T(n) ≤ O(n log n)

18

Another classic divide and conquer problem
Mergesort

• To sort an array of entries, recursively
sort the first half and recursively sort the
second half. Then merge the two sorted
lists.

• Merging two sorted arrays takes time
as we only have to compare current
elements as we iterate through both arrays

• Recursive time equation:
 with .

• Solution:

n

O(n)

T(n) ≤ 2T(n/2) + O(n) T(1) = 0

T(n) ≤ O(n log n)

19

Another classic divide and conquer problem
Mergesort

• To sort an array of entries, recursively
sort the first half and recursively sort the
second half. Then merge the two sorted
lists.

• Merging two sorted arrays takes time
as we only have to compare current
elements as we iterate through both arrays

• Recursive time equation:
 with .

• Solution:

n

O(n)

T(n) ≤ 2T(n/2) + O(n) T(1) = 0

T(n) ≤ O(n log n)

20

Another classic divide and conquer problem
Mergesort

• To sort an array of entries, recursively
sort the first half and recursively sort the
second half. Then merge the two sorted
lists.

• Merging two sorted arrays takes time
as we only have to compare current
elements as we iterate through both arrays

• Recursive time equation:
 with .

• Solution:

n

O(n)

T(n) ≤ 2T(n/2) + O(n) T(1) = 0

T(n) ≤ O(n log n)

21

Euclidean closest pair

• Input: A sequence of points

• Find: The pair minimizing .

• Brute force algorithm: Try all pairs. time.

• Is there a better algorithm for small ?

• In 1D for example, we can sort and then compare nearest neighbors for
.

• Can we do better?

n p1, …, pn ∈ ℝd

pi, pj ∥pi − pj∥

O(n2d)

d

O(n log n)

22

2D Euclidean closest pair

• Sorting on first coordinate will not work

• No single direction for sorting guarantees success

• Divide and conquer algorithm:

• Need to figure out a way to subdivide the problem

• Then build solution from best solutions to both
halves. This will require extra processing

23

Split across -coordinate anywaysx

• Let’s split according to -coordinate
anyways

• Let be the median -coordinate

• Divide the set into points
 and

• Let be the minimum of the two
solutions

x

m x

{p : p1 ≤ m} {p : p > m}

δ

24

The “conquer” aspect of the algorithm

• We only need to worry about pairs that
are both split by the median and
distance apart

• During “conquer” step, only need to
look at vertices in the -width band

• Within the band, only need to
compare points with -coordinates
that differ by

< δ

δ

y
< δ

25

Close-up analysis

26

Close-up analysis

27

Close-up analysis

28

Close-up analysis

29

The full conquer subroutine

30

• Let be the set of points in band.

• Sort the points in by -coordinate

• For each point , compare to
the 8 points before and 8 points after

 in the sorting.

• By analysis, this checks all possible
pairs of distance .

M

M y

a ∈ M a

a

< δ

Divide and conquer algorithm

• Divide step:

• Compute median and divide into two subproblems

• Recursively calculate shortest distance for subproblems

• Conquer step:

• Compute the set of points in the band

• Sort by -coordinate

• Compare points in sorted with the next 8 points and update if closer pair found.

m

M

M y

M

31

Better divide and conquer algorithm

• Preprocessing:

• Sort points according to -coordinate for list

• Sort points according to -coordinate for list

• Divide step (sorted lists ,):

• Compute median by -coordinate

• Divide into . Filter into and .

• Recursively solve and problems for

• Conquer step:

• Filter into the band of -coordinates

• Compare to the next 8 points and update if closer point is found.

x X

y Y

X Y

m x

X XL, XR Y YL YR

(XL, YL) (XR, YR) δ

Y M x m ± δ

M

32

Analysis divide and conquer runtimes
The master theorem

• For solving recursive equations of the form 
 

 and

• Different cases based on how , and compare:

T(n) = a ⋅ T (n
b) + f(n) T(< b) = O(1)

f(n), a b

33

Analysis divide and conquer runtimes
The master theorem

• For solving recursive equations of the form 
 

 and

• Different cases based on how , and compare:

• If , then

• If , then

• If , then

T(n) = a ⋅ T (n
b)+O(nk) T(< b) = O(1)

f(n), a b

a < bk T(n) = O(nk)

a = bk T(n) = O(nk log n)

a > bk T(n) = O(nlogb a)
34

