Lecture 8

Divide and conquer

Chinmay Nirkhe | CSE 421 Winter 2026

Midterm (logistics)

* Mon Feb 2nd 5:30 - 7:20 pm in BAG 131
* Lecture 11 (next Friday) will be 50% a review session
» Contents covered: Everything through Divide and Conquer algorithms

* Since we won’t any HW problems on D&C before the midterm, exam questions will only be conceptual
on D&C

 Exam consists of multiple choice questions and long form
* Long form are similar to HW long forms but tailored for less writing
* So read instructions carefully and only answer what is asked of you
* Practice midterm will be released sometime this weekend

* Poll: Cheat sheet vs. repeat problem

MST applications

Applications of MST

 Network design — minimal connectivity for telephone, electrical, cable, internet networks
* Approximation algorithms for computational problems - traveling problem, Steiner trees
* |ndirect applications

 Max bottleneck paths

 LDPC error correcting codes

* Image restoration under Renyi entropy

 Reducing data storage in sequencing amino acids

 Modeling local particle interaction in turbulence flows

* Autoconfig protocol for Ethernet bridging to avoid network cycles

4

k-clustering of data points

v
Maximum distance clustering /\
. ’ U o7

e Input: A set U of n elements, a metricd : U” - R,

and k € N

» Metric satisfies d(u, u) = 0, d(u,v) = d(v, u)

e and triangle inequality d(u, v) + d(v, w) > d(u, w) , e
» Output: A clustering function a : U — [k] maximizing n .

Alun)
min d(u,v), Minimup ist

uyvelU: a(u)#a(v) Lot o

the minimum distance between the clusters Clew fens

5

Kruskal’s based algorithm

. Let V= U and E = V? (all-to-all) with weight w(e) = d(e).

» Run Kruskal’s until n — k edges are added.

e Ensures that there are k trees in the forest.
* Assign a cluster for every tree.

» Alternatively, run any MST algorithm and delete the heaviest
k — 1 edges from the output tree.

Maximum distance clustering optimality

 Let d* be the dist. between clustering a generated by Kruskal’s

» By our alg. design, d* > d(u, v) for u, v in the same cluster:
a(u) = a(v).

» Consider a different clustering b : U — [k] b(«) .-~ RN
» There exist two points such that a(u) = a(v) but b(u) # b(v). . N

* Then the max spacing between clusters of b is at most

d(u, V) S d* i':' / /

» So the max spacing of b is < the max spacing of a. So a is o(v)
optimal.

Divide and conquer

Principles of divide and conquer

» |dentity a division of the problem into a self-similar parts of size n/b

* Recursively solve each subpart of the problem

o Stitch the solutions from each subpart together

 Runtime is defined by the following recursively defined formula:

In)=a-T (%) + f(n)and T(< b) = O(1)

9

Examples of divide and conquer

* Mergesort, Quicksort
* Binary search
* Euclidean closest pair

* Rank selection, Median finding

Binary search for roots of a function

* Input: Description of

» acontinuousf: R — R,

» a < b € Rsuchthat f(a) <0 < f(b)

e and e > 0

Binary search for roots of a function

* Input: Description of

» acontinuousf: R — R,

e a< b el

e and e > 0

such that f(a) < 0 < f(b)

o Output: A value x € [a, b] such that
f(x") =0forsome |x'— x| < €.

Bisection method

e Intermediate value theorem (IVT): If f(0) = 0, f(1) = 1 and fis continuous,
there exists an x € (0,1) such that f(x) = 1/2.

 Proof by picture:

[';’? \ ‘

A“\ TunCIM o~ W\\A,Dq- lALL>
7 |

—,—L\L ol line 0\7" SN2 ’Fo.“\—l_

57 co«dw'nw’JY .

13

Bisection method

e Algorithm g(x, y): e Claim:If f(x) <0 < f(y) for x <y,
then g(x, y) outputs an m such that
o Letm « (x + y)/2. fm") =0 for |m'—m| <L e.
e If y—x < 2e, return m. e Proof:
e Letz « f(m). Base case, follows from IVT.
e If 2> 0, return g (x, m). » Otherwise, e o
220 T B
o Else, return g (m, y). . J f
|
14 X / x

Runtime analysis

Binary search problem

» Therefore, running g(a, b) will solve the bisection problem.
» Each iteration of g is on an interval of half the length

e starting from b — a until the lengthis < 2¢
b—a
2€

. Therefore, log, () recursions.

» Each recursion costs O(1) arithmetic operations plus 1 query to /.

» Runtime: O(log(b — a) + log(1/¢€)) queries to f.

15

Runtime analysis

 Simple version of generalized runtime analysis.
e Letk = (b — a)l/(2e).
e Then, T(k) = T(k/2) + 1 and T(1) = O for number of queries.

« Solves to T(k) = [log, k| + 1.

16

Another classic divide and conquer problem

Mergesort

 Jo sort an array of n entries, recursively
sort the first half and recursively sort the

second half. Then merge the two sorted -
lists.

« Merging two sorted arrays takes O(n) time LORT
as we only have to compare current
elements as we iterate through both arrays

* Recursive time equation:
T(n) <21T(n/2) + O(n) with T(1) = 0.

e Solution: T(n) < O(nlogn)

17

Another classic divide and conquer problem

Mergesort

 Jo sort an array of n entries, recursively
sort the first half and recursively sort the

second half. Then merge the two sorted
lists. | r T

SORT SORT

« Merging two sorted arrays takes O(n) time
as we only have to compare current
elements as we iterate through both arrays MERCH

(T

* Recursive time equation:
T(n) <21T(n/2) + O(n) with T(1) = 0.

e Solution: T(n) < O(nlogn)

18

Another classic divide and conquer problem

Mergesort

 Jo sort an array of n entries, recursively
sort the first half and recursively sort the

second half. Then merge the two sorted
lists. | r T

« Merging two sorted arrays takes O(n) time 7
as we only have to compare current
elements as we iterate through both arrays MERCH

(T

* Recursive time equation:
T(n) <21T(n/2) + O(n) with T(1) = 0.

e Solution: T(n) < O(nlogn)

19

Another classic divide and conquer problem

Mergesort

 Jo sort an array of n entries, recursively
sort the first half and recursively sort the
second half. Then merge the two sorted

lists. | — . ; _——
- ‘ I |
= ===
« Merging two sorted arrays takes O(n) time 2
as we only have to compare current

elements as we iterate through both arrays MERCH

(T

* Recursive time equation:
T(n) <21T(n/2) + O(n) with T(1) = 0.

e Solution: T(n) < O(nlogn)

20

Another classic divide and conquer problem

Mergesort

 Jo sort an array of n entries, recursively
sort the first half and recursively sort the
second half. Then merge the two sorted

lists. I bgﬁ — Aﬂr = JEET

« Merging two sorted arrays takes O(n) time 2
as we only have to compare current
elements as we iterate through both arrays MERCH

(T

* Recursive time equation:

T(n) <2T(n/2) + O(n) with 7(1) = 0.
. O(loq w
° S I :T < O 1 OGTel Co wle, . nh og wn J
olution: 7(n) < O(nlogn) Total w\f’lz O(lj > l"b‘a"\"-

21

Euclidean closest pair / /

. _ d \ O'F, ¢
e Input: A sequence of n points p, ..., p, € | o /Y
VP
+ Find: The pair p;, p; minimizing ||p; — p;||. o /
. Brute force algorithm: Try all pairs. O(n*d) time. . |

» Is there a better algorithm for small d?

* |In 1D for example, we can sort and then compare nearest neighbors for

O(nlogn).
e Can we do better?

22

[
% (l)lb'\

2D Euclidean closest pair

» Sorting on first coordinate will not work

C
A
* No single direction for sorting guarantees success o
(0,0)

(3, 2)

e Divide and conquer algorithm:

g()(""na 3“,%
 Need to figure out a way to subdivide the problem
A,B,C. \'\’\f“l‘e’ sheidal

* Then build solution from best solutions to both paic is A—C.
halves. This will require extra processing

23

Split across x-coordinate anyways

 Let’s split according to x-coordinate S

anyways

e et m be the median x-coordinate

* Divide the set into points
WpippSmypand (pip>myp e,

e Let O be the minimum of the two
solutions

o

_CS ’H’\\.S gma—ramlmt& ’]‘0 lec <l’(- C',\oxosjr S,-d‘ O-

24

The “conquer” aspect of the algorithm

* We only need to worry about pairs that ¢ o
are both split by the median and < o
distance apart 1 o f
* During “conquer” step, only need to
look at vertices in the 0-width band O

* Within the band, only need to
compare points with y-coordinates
that differ by < o

25

- How wany pts across the median do we
- T Pt
Close-up analys . me oo b 4.7

26

Clﬂse-up analysis How Wlam/ F‘B acrogs the Medion do we
have. 1o COmPan e A 7

N ocdir to be distanc £ N <(v)7w\ A:
-.--- N f\>\' T wust ke in this box.

27

Close-up analysis

How Wlam/ F’rs across e Wedian do we
hove. +o C(‘)W\'l)cmg Wi A ?

M odur Yo be distanc £ O QM A
O Br T wust e in tiis box.

How ey suchy paints 5 Can exist <

Note : “ FB("‘(EA l\ 2 S Sintz on
Hhe same Sile

28

Close-up analysis

How Wlam/ F‘B acrozs e medion do we
hove. +o COW\'chQ widHA A ?

M ocdir o be distance £ O <()mm A
& Br T wust e in this box.

How vvwmz/ sucl ‘|>o'u\‘\'s BL Com &(3342

Note : “ (B(_(Eé\ l\ 2 3 Sintz on
the same Sicle

Eac,\,\ *g X % box can l/\a\va ok most L

Po‘w\l\' Bi' S0 at wmost % '\DOic\st.

29

The full conquer subroutine

« Let M be the set of points in band.

« Sort the points in M by y-coordinate

* For each point a € M, compare a to
the 8 points before and 8 points after

a In the sorting.

* By analysis, this checks all possible
pairs of distance < 0.

30

Divide and conquer algorithm

Total: T(n) = 2T(3) + O(n Ioq +)
 Divide step:

» Compute median m and divide into two subproblems « O(VL lbj V\> Hone, widh &H:j
* Recursively calculate shortest distance for subproblems « T({‘—) 97 Fecnfsion,

 Conquer step:
 Compute the set of points inthe band M & O(1) 4ime since we socted {%r the median
» Sort M by y-coordinate & O(n loga) Hme as potentially W points in band.
« Compare points in sorted M with the next 8 points and update if closer pair found.

T 0tn) Hime since cocted.

31

Better divide and conquer algorithm

 Preprocessing:
 Sort points according to x-coordinate for list X % OQ’\ lo j ,\'> Hee 0'\\7 onee |
 Sort points according to y-coordinate for list Y
« Divide step (sorted lists X, Y):
« Compute median m by x-coordinate & D(\’) e Snce Sortedd
. Divide X into X;, Xy Filter Yinto ¥, and Y. & O(n) Hime, | once- thamgn The s
» Recursively solve (X;, Y;) and (X5, Yz) problems for6 &« 2 TC“;—") 1971 rECi o ™— _IZV\ }
 Conquer step:
+ Filter Y into the band M of x-coordinates m £ 6 & O(w) Hwg,

« Compare M to the next 8 points and update if closer point is found. & O (v\) Hone

32

Analysis divide and conquer runtimes

The master theorem

* For solving recursive equations of the form

I(n)=a-T (%) + f(n)and T(< b) = O(1)

» Different cases based on how f(n), a, and b compare:

Analysis divide and conquer runtimes

The master theorem

* For solving recursive equations of the form

In)=a-T (%)+0(nk) and 7(< b) = O(1)

» Different cases based on how f(n), a, and b compare:
e Ifa < bX, then T(n) = O(n*)
. If a = b*, then T(n) = O(n*log n)

e Ifa > b*, then T(n) = O(n'°%%)

