

Lecture 8

Divide and conquer

Chinmay Nirke | CSE 421 Winter 2026

W

Midterm (logistics)

- Mon Feb 2nd 5:30 - 7:20 pm in BAG 131
- Lecture 11 (next Friday) will be 50% a review session
- Contents covered: Everything through Divide and Conquer algorithms
 - Since we won't see any HW problems on D&C before the midterm, exam questions will only be conceptual on D&C
- Exam consists of multiple choice questions and long form
 - Long form are similar to HW long forms but tailored for less writing
 - So read instructions carefully and only answer what is asked of you
- Practice midterm will be released sometime this weekend
- Poll: Cheat sheet vs. repeat problem

MST applications

Applications of MST

- Network design – minimal connectivity for telephone, electrical, cable, internet networks
- Approximation algorithms for computational problems - traveling problem, Steiner trees
- Indirect applications
 - Max bottleneck paths
 - LDPC error correcting codes
 - Image restoration under Renyí entropy
 - Reducing data storage in sequencing amino acids
 - Modeling local particle interaction in turbulence flows
 - Autoconfig protocol for Ethernet bridging to avoid network cycles

k -clustering of data points

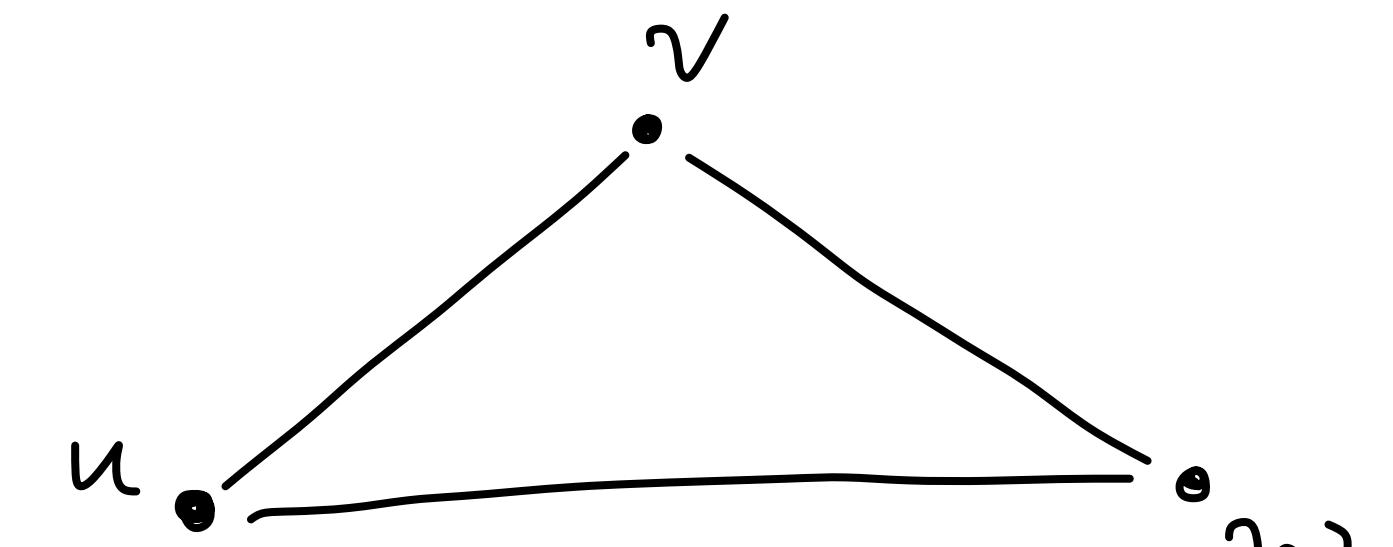
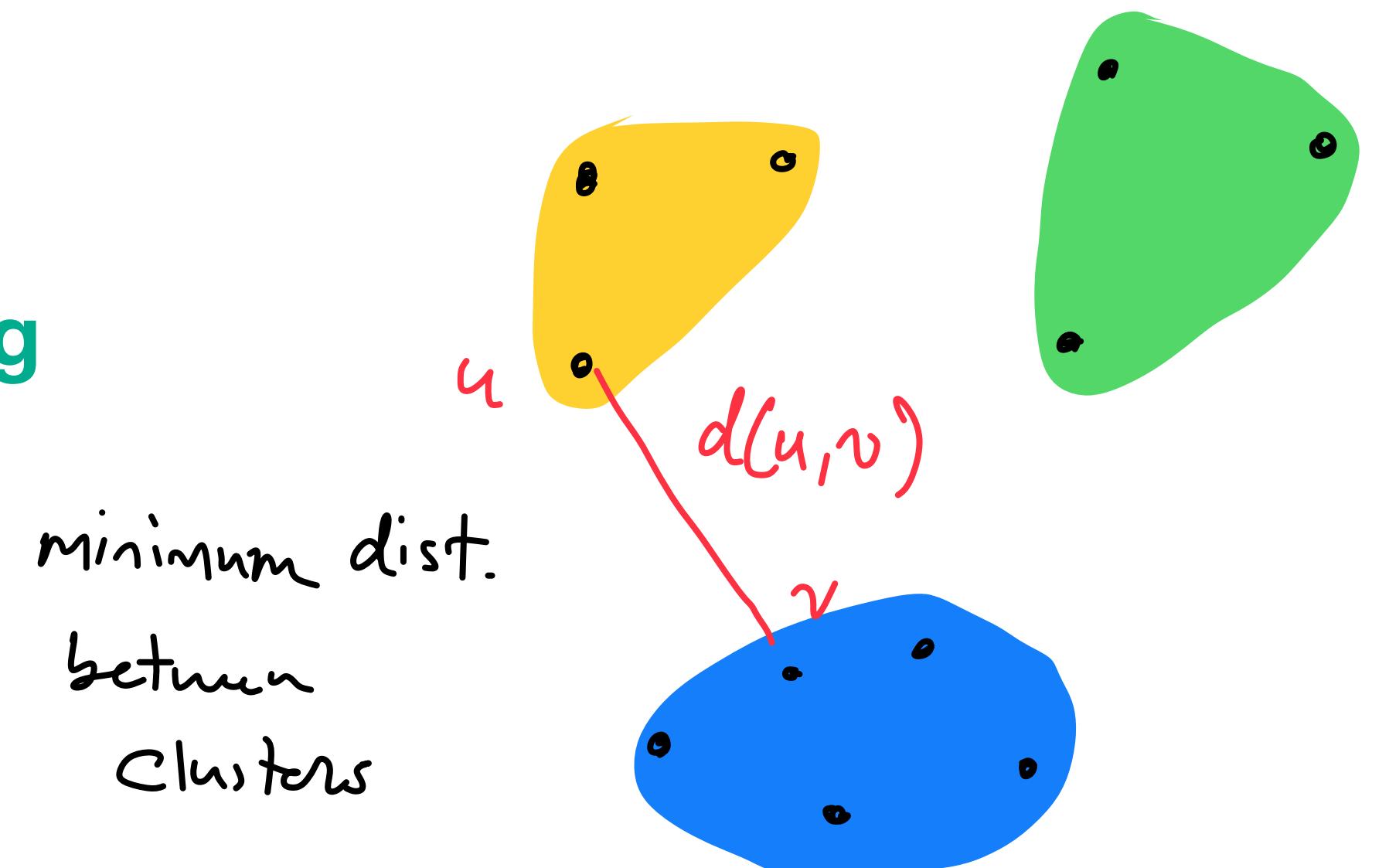
Maximum distance clustering

- **Input:** A set U of n elements, a **metric** $d : U^2 \rightarrow \mathbb{R}_{\geq 0}$, and $k \in \mathbb{N}$

- Metric satisfies $d(u, u) = 0$, $d(u, v) = d(v, u)$
- and triangle inequality $d(u, v) + d(v, w) \geq d(u, w)$
- **Output:** A clustering function $a : U \rightarrow [k]$ **maximizing**

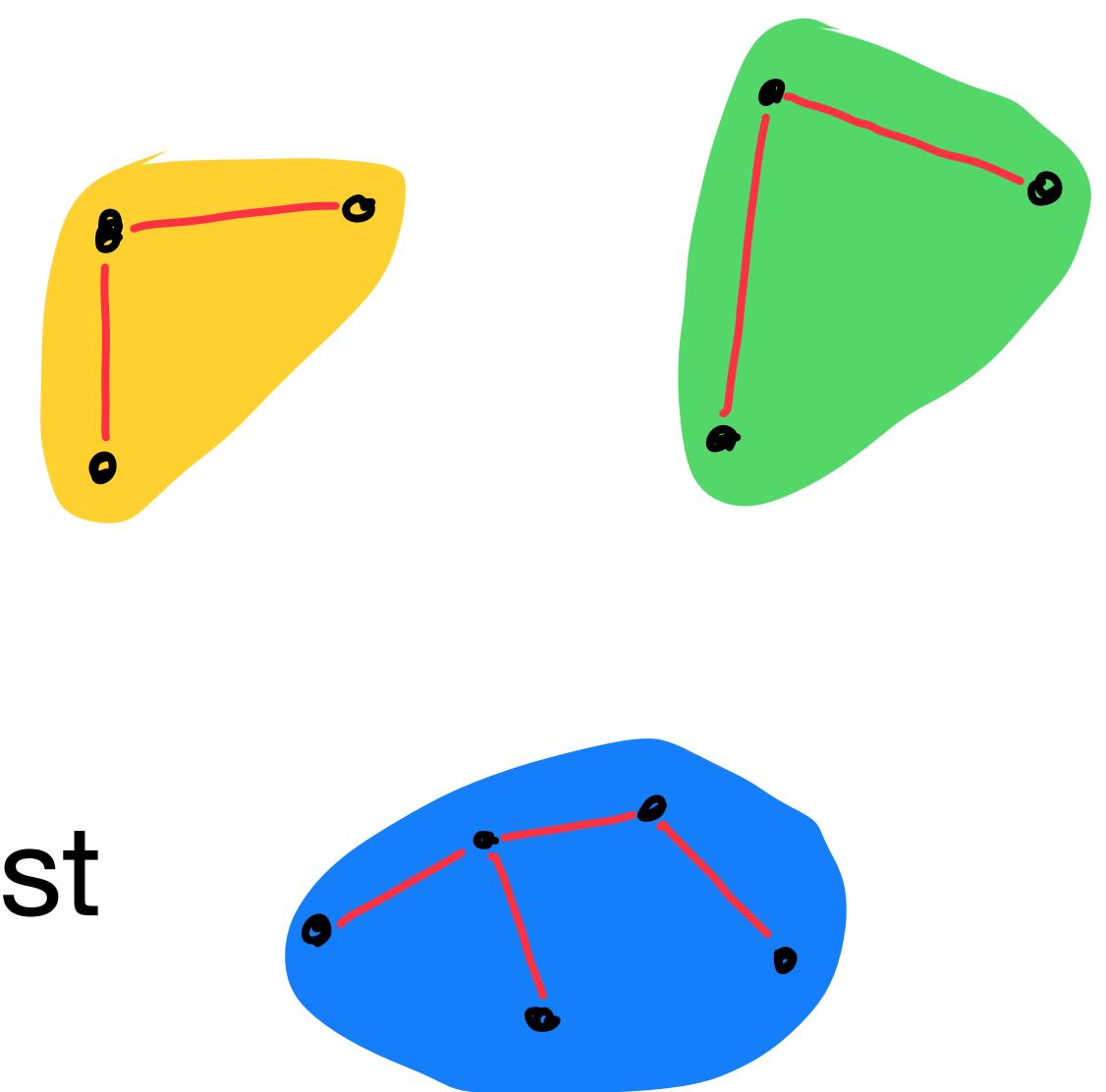
$$\min_{u, v \in U: a(u) \neq a(v)} d(u, v),$$

the minimum distance between the clusters



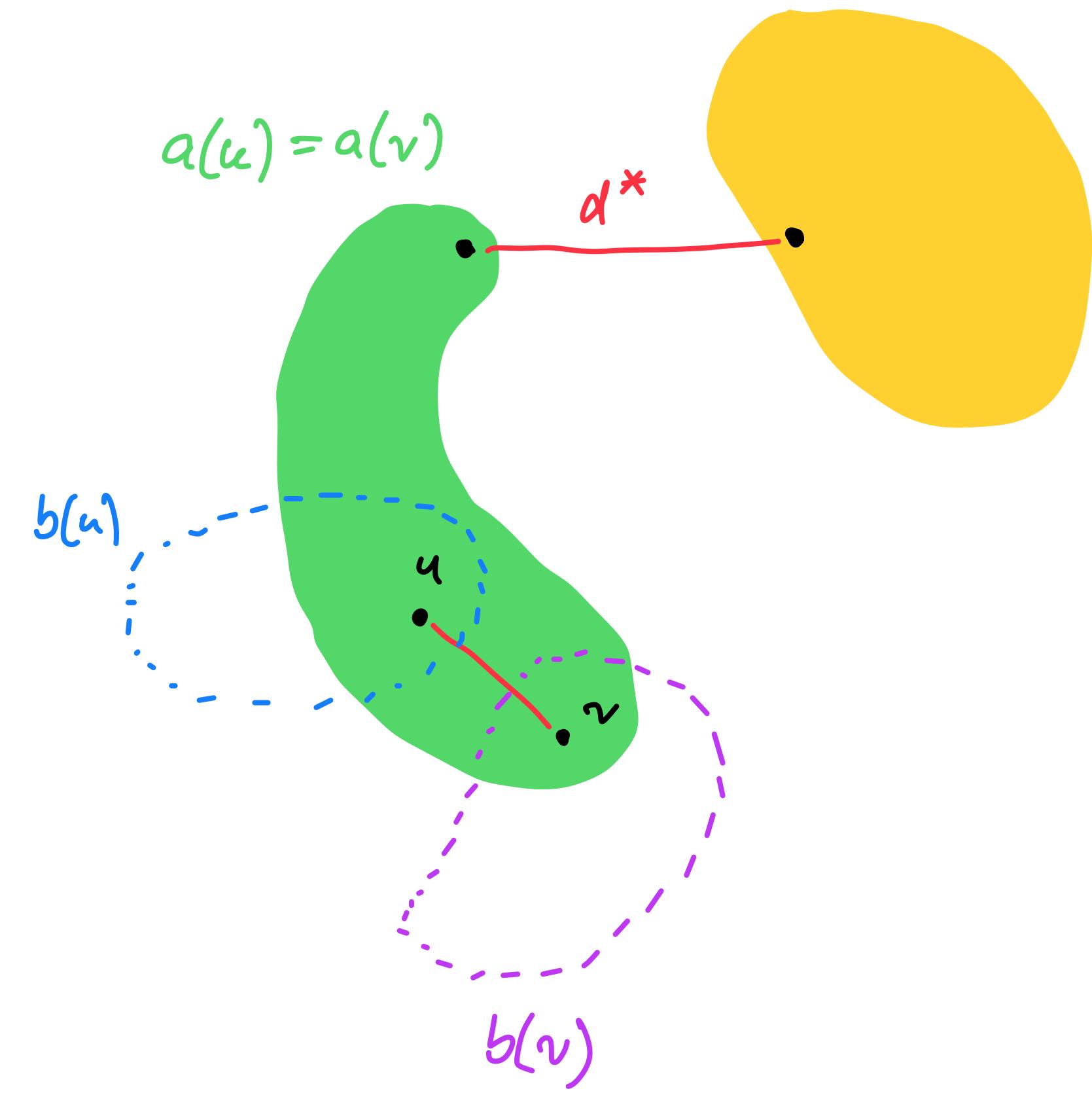
Kruskal's based algorithm

- Let $V = U$ and $E = V^2$ (all-to-all) with weight $w(e) = d(e)$.
- Run Kruskal's until $n - k$ edges are added.
 - Ensures that there are k trees in the forest.
 - Assign a cluster for every tree.
 - Alternatively, run any MST algorithm and delete the heaviest $k - 1$ edges from the output tree.



Maximum distance clustering optimality

- Let d^* be the dist. between clustering a generated by Kruskal's
- By our alg. design, $d^* \geq d(u, v)$ for u, v in the same cluster:
 $a(u) = a(v)$.
- Consider a *different* clustering $b : U \rightarrow [k]$
 - There exist two points such that $a(u) = a(v)$ but $b(u) \neq b(v)$.
 - Then the **max** spacing between clusters of b is at most $d(u, v) \leq d^*$.
 - So the **max** spacing of b is \leq the **max** spacing of a . So a is optimal.



Divide and conquer

Principles of divide and conquer

- Identify a division of the problem into a self-similar parts of size n/b
- Recursively solve each subpart of the problem
- Stitch the solutions from each subpart together
- Runtime is defined by the following recursively defined formula:

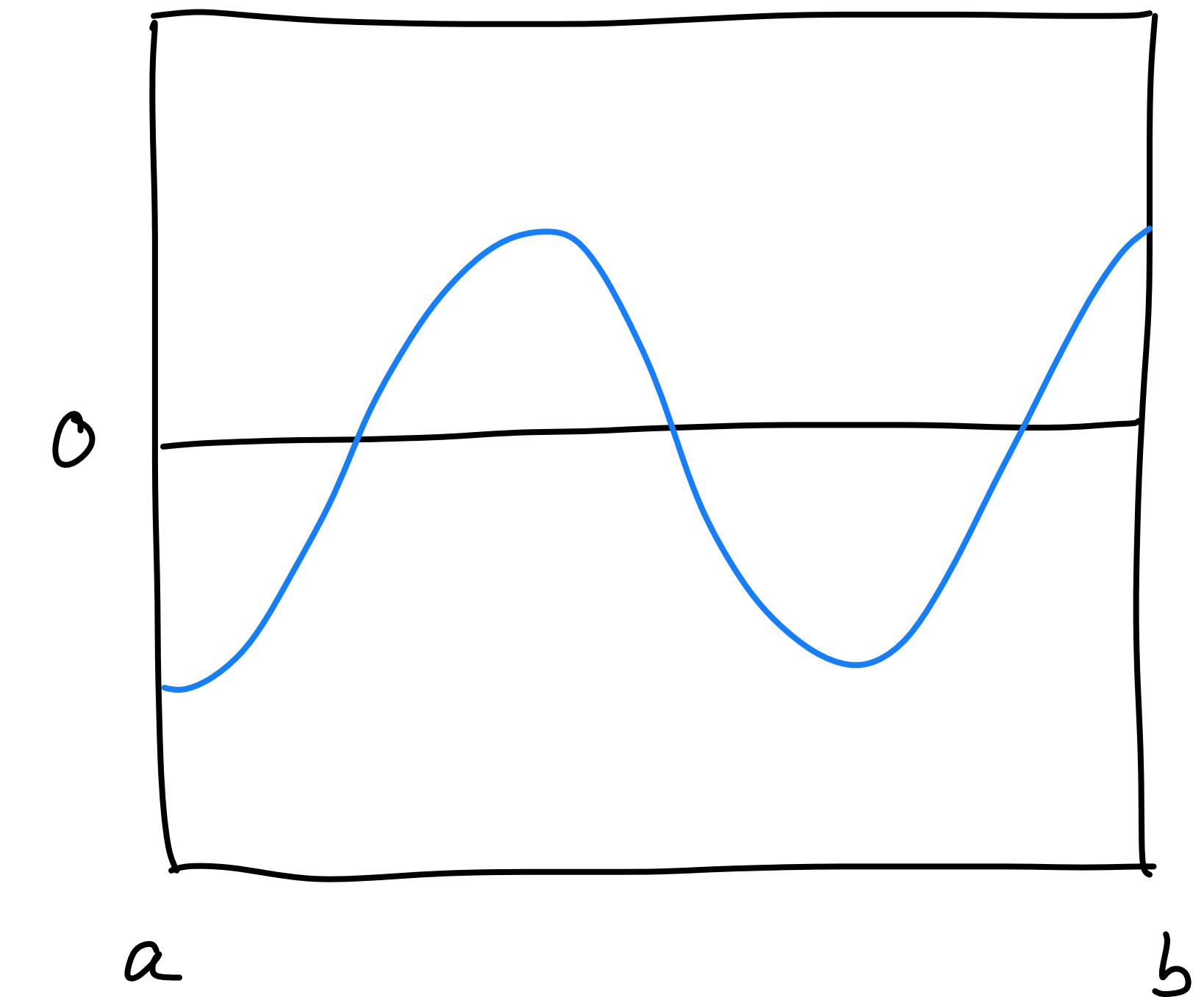
$$T(n) = a \cdot T\left(\frac{n}{b}\right) + f(n) \text{ and } T(n < b) = O(1)$$

Examples of divide and conquer

- Mergesort, Quicksort
- Binary search
- Euclidean closest pair
- Rank selection, Median finding

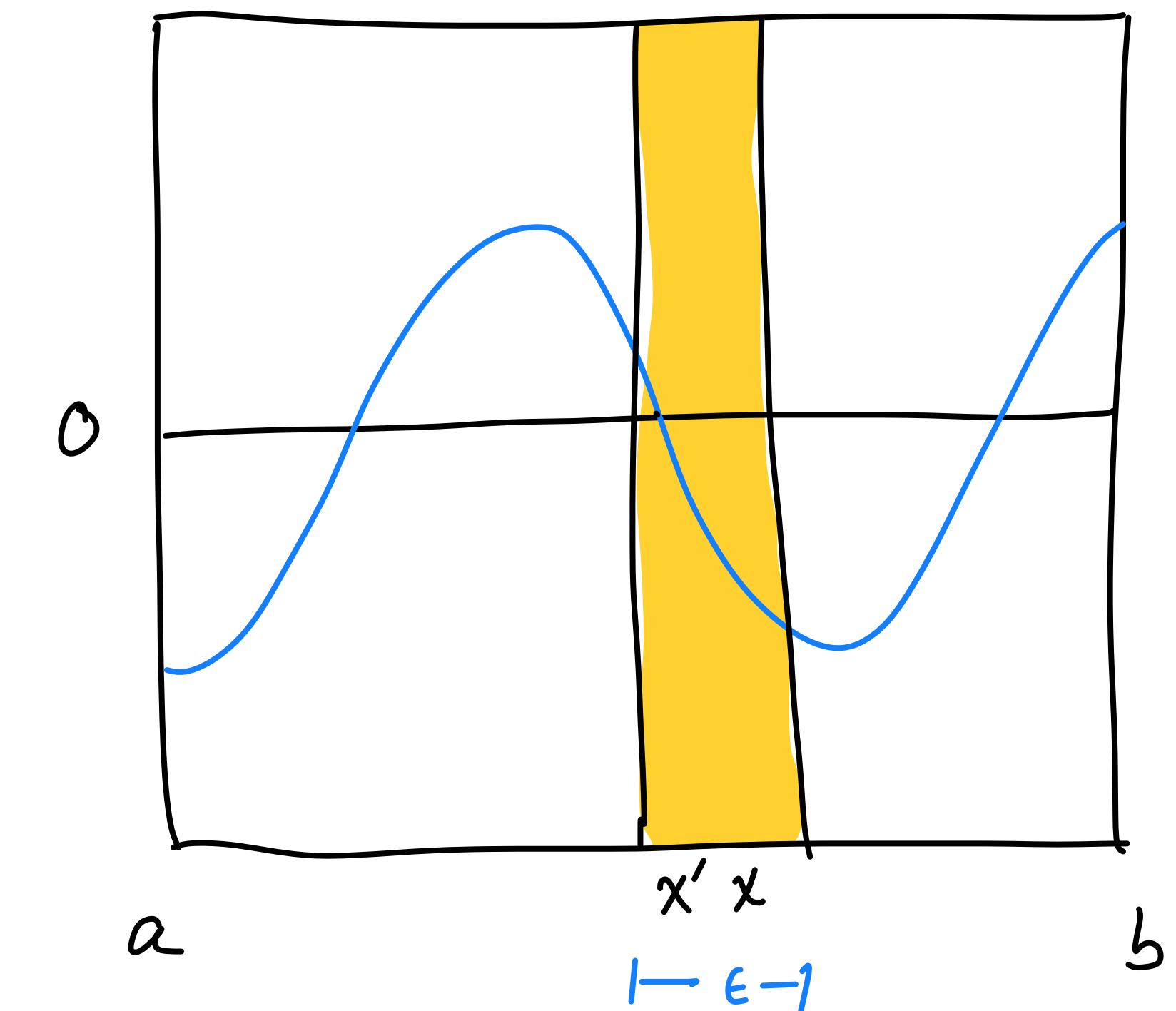
Binary search for roots of a function

- **Input:** Description of
 - a continuous $f: \mathbb{R} \rightarrow \mathbb{R}$,
 - $a < b \in \mathbb{R}$ such that $f(a) \leq 0 < f(b)$
 - and $\epsilon > 0$



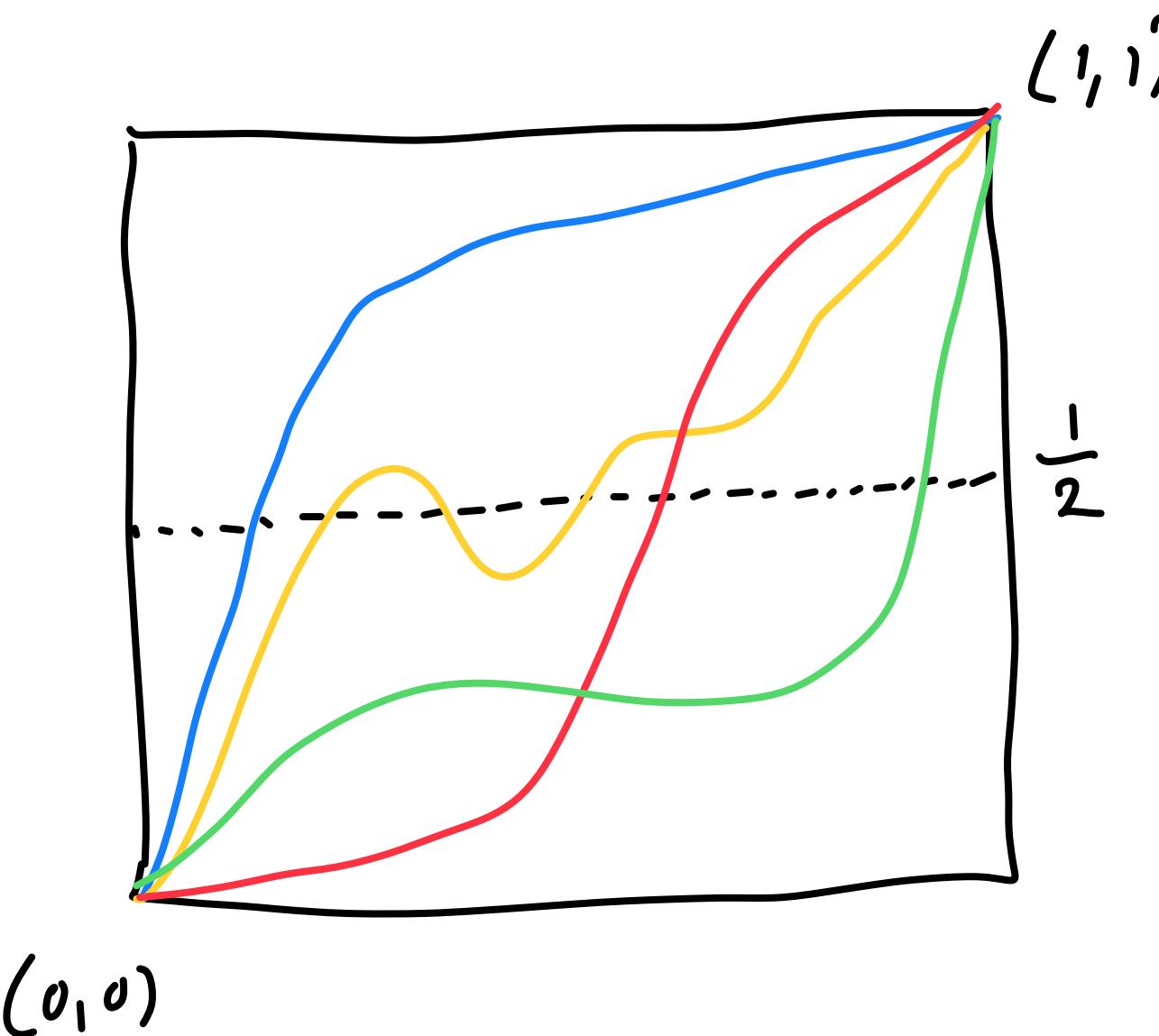
Binary search for roots of a function

- **Input:** Description of
 - a continuous $f: \mathbb{R} \rightarrow \mathbb{R}$,
 - $a < b \in \mathbb{R}$ such that $f(a) \leq 0 < f(b)$
 - and $\epsilon > 0$
- **Output:** A value $x \in [a, b]$ such that $f(x') = 0$ for some $|x' - x| \leq \epsilon$.



Bisection method

- **Intermediate value theorem (IVT):** If $f(0) = 0, f(1) = 1$ and f is continuous, there exists an $x \in (0,1)$ such that $f(x) = 1/2$.
- **Proof by picture:**



Any function must cross
the midline at some point
by continuity.

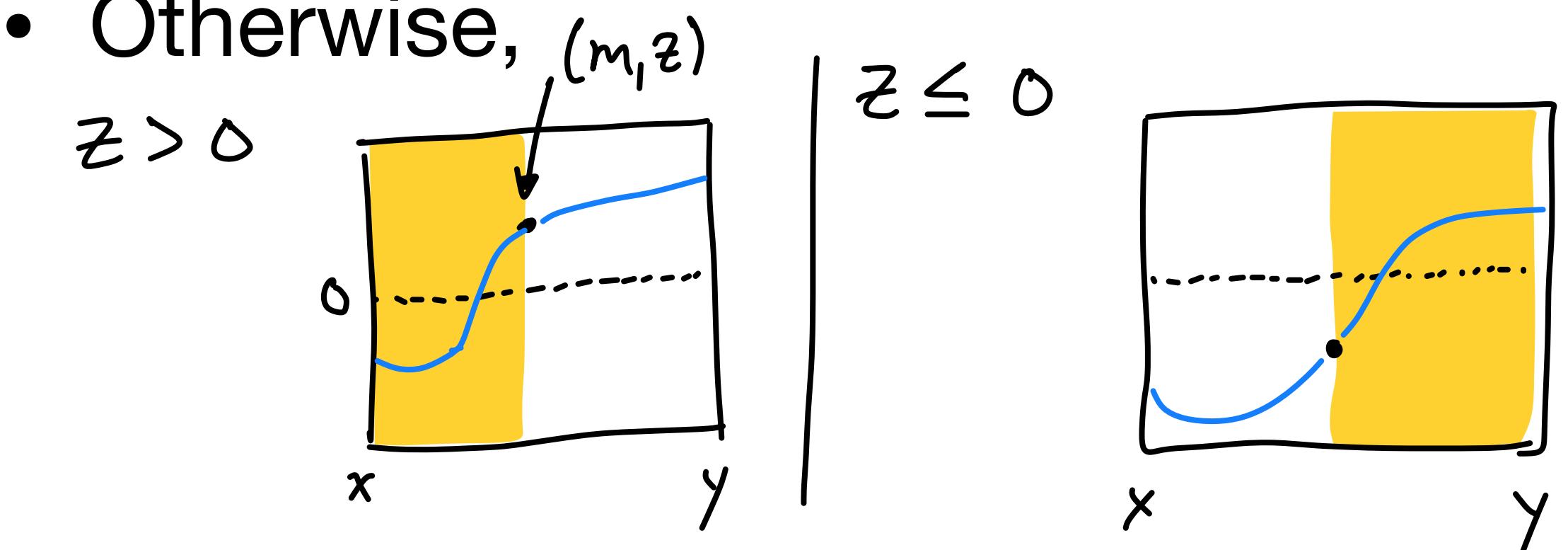
Bisection method

- **Algorithm** $g(x, y)$:
 - Let $m \leftarrow (x + y)/2$.
 - If $y - x \leq 2\epsilon$, return m .
 - Let $z \leftarrow f(m)$.
 - If $z > 0$, return $g(x, m)$.
 - Else, return $g(m, y)$.

- **Claim:** If $f(x) \leq 0 < f(y)$ for $x < y$, then $g(x, y)$ outputs an m such that $f(m') = 0$ for $|m' - m| \leq \epsilon$.
- **Proof:**

- Base case, follows from IVT.

- Otherwise,



Runtime analysis

Binary search problem

- Therefore, running $g(a, b)$ will solve the bisection problem.
- Each iteration of g is on an interval of half the length
 - starting from $b - a$ until the length is $\leq 2\epsilon$
- Therefore, $\log_2 \left(\frac{b - a}{2\epsilon} \right)$ recursions.
- Each recursion costs $O(1)$ arithmetic operations plus 1 query to f .
- Runtime: $O(\log(b - a) + \log(1/\epsilon))$ queries to f .

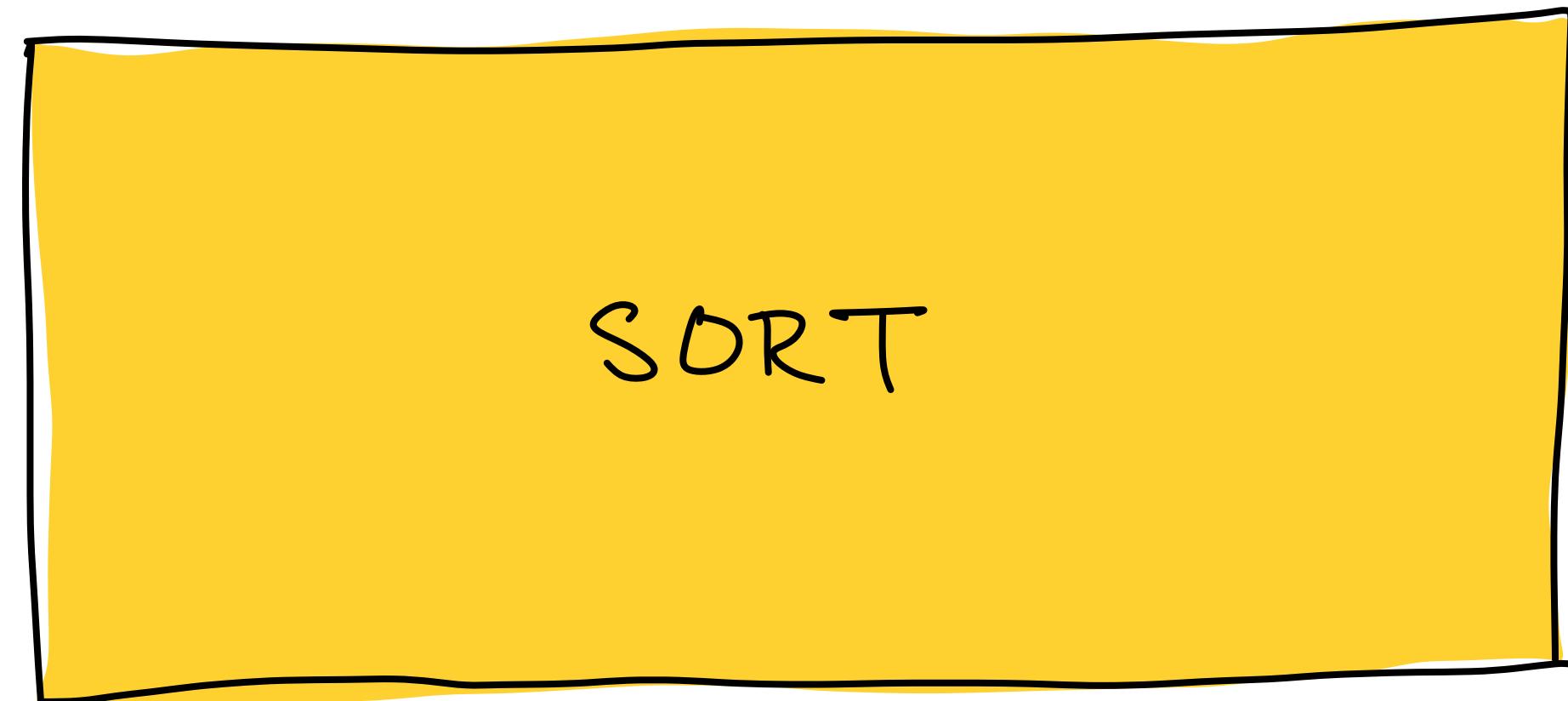
Runtime analysis

- Simple version of generalized runtime analysis.
- Let $k = (b - a)/(2\epsilon)$.
- Then, $T(k) = T(k/2) + 1$ and $T(1) = 0$ for number of queries.
- Solves to $T(k) = \lceil \log_2 k \rceil + 1$.

Another classic divide and conquer problem

Mergesort

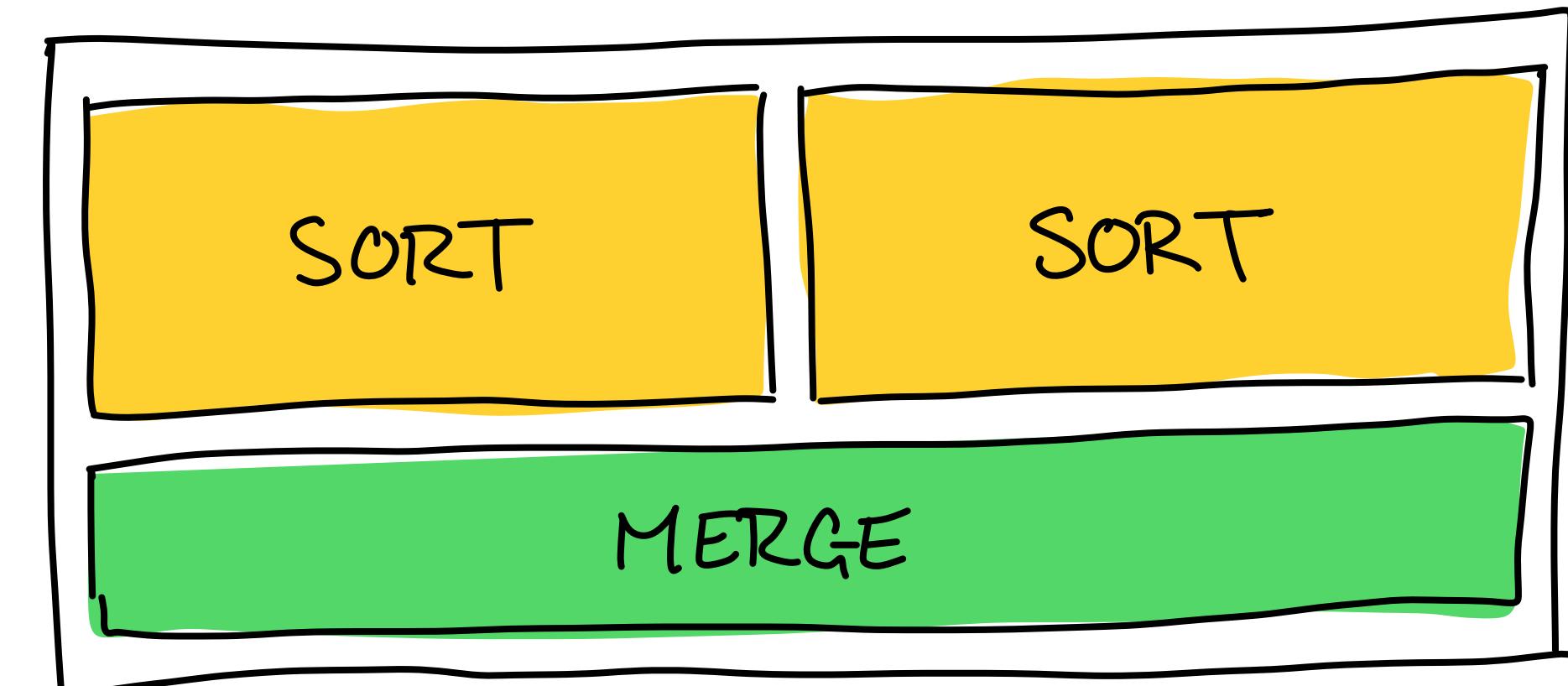
- To sort an array of n entries, recursively sort the first half and recursively sort the second half. Then *merge* the two sorted lists.
- Merging two sorted arrays takes $O(n)$ time as we only have to compare current elements as we iterate through both arrays
- Recursive time equation:
$$T(n) \leq 2T(n/2) + O(n) \text{ with } T(1) = 0.$$
- Solution: $T(n) \leq O(n \log n)$



Another classic divide and conquer problem

Mergesort

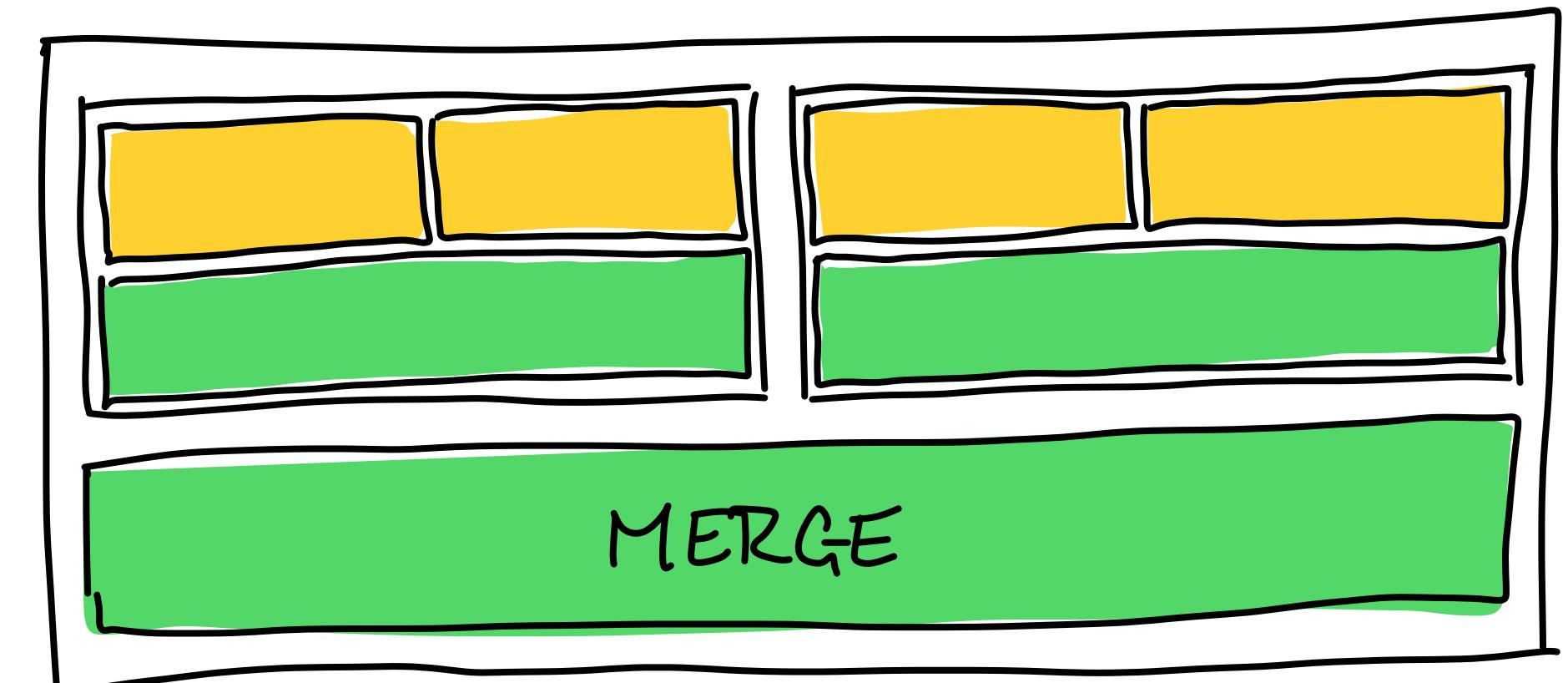
- To sort an array of n entries, recursively sort the first half and recursively sort the second half. Then *merge* the two sorted lists.
- Merging two sorted arrays takes $O(n)$ time as we only have to compare current elements as we iterate through both arrays
- Recursive time equation:
$$T(n) \leq 2T(n/2) + O(n) \text{ with } T(1) = 0.$$
- Solution: $T(n) \leq O(n \log n)$



Another classic divide and conquer problem

Mergesort

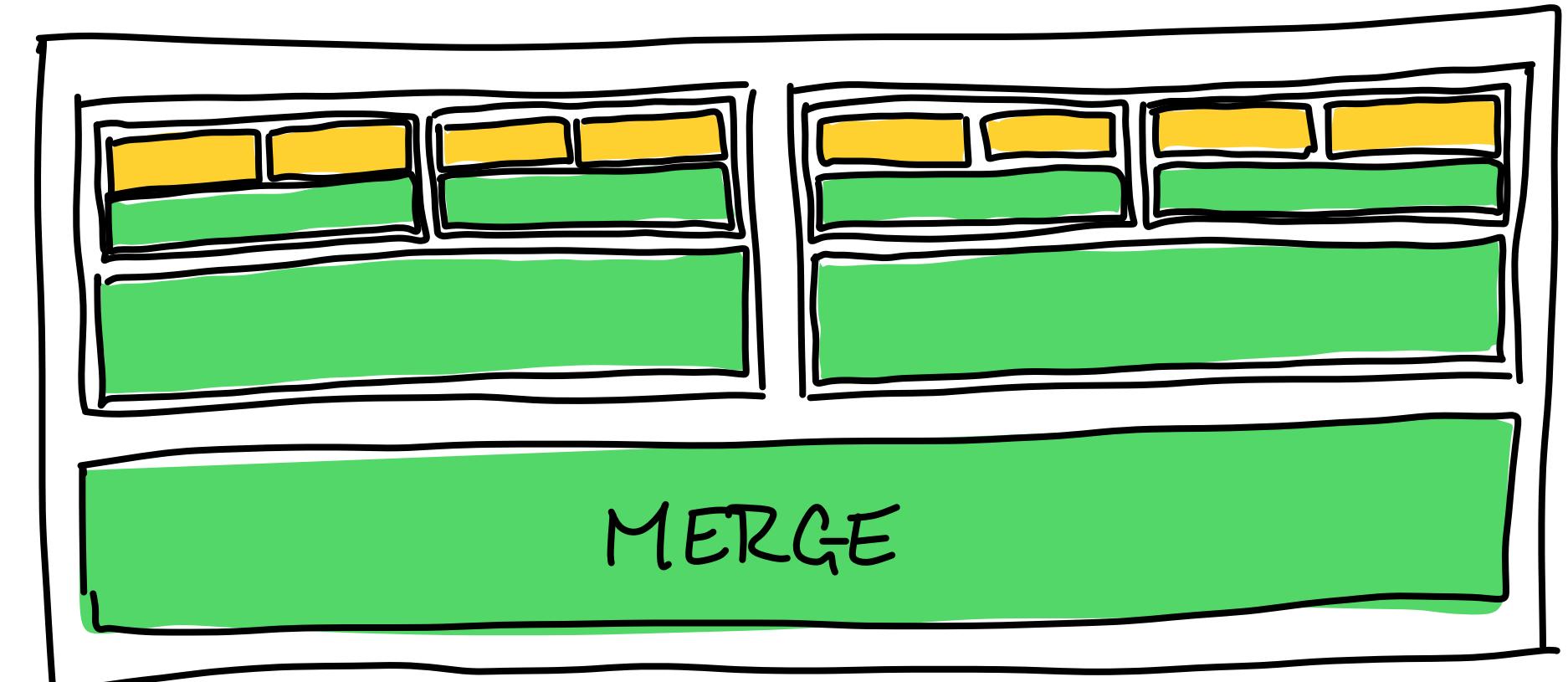
- To sort an array of n entries, recursively sort the first half and recursively sort the second half. Then *merge* the two sorted lists.
- Merging two sorted arrays takes $O(n)$ time as we only have to compare current elements as we iterate through both arrays
- Recursive time equation:
$$T(n) \leq 2T(n/2) + O(n) \text{ with } T(1) = 0.$$
- Solution: $T(n) \leq O(n \log n)$



Another classic divide and conquer problem

Mergesort

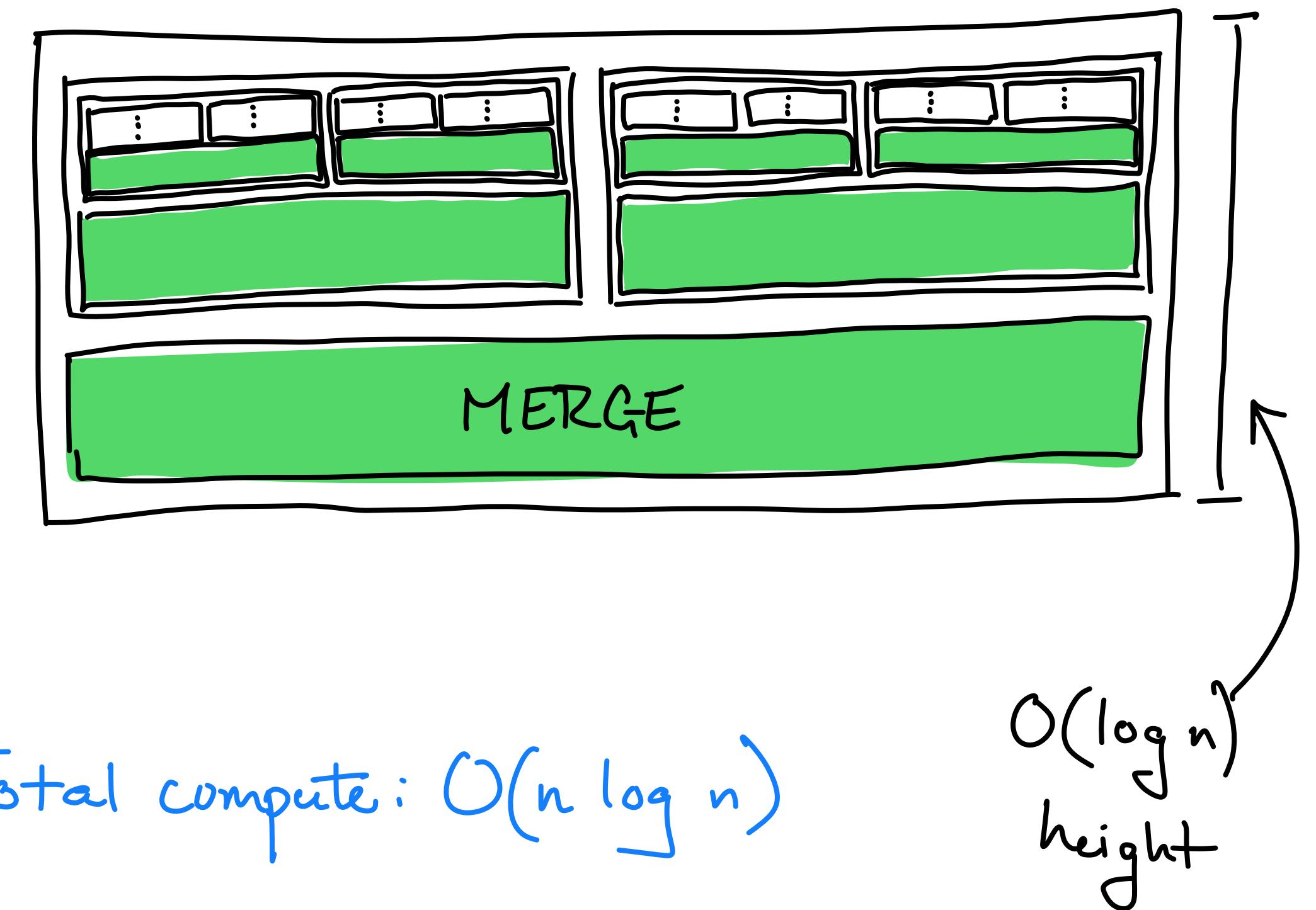
- To sort an array of n entries, recursively sort the first half and recursively sort the second half. Then *merge* the two sorted lists.
- Merging two sorted arrays takes $O(n)$ time as we only have to compare current elements as we iterate through both arrays
- Recursive time equation:
$$T(n) \leq 2T(n/2) + O(n) \text{ with } T(1) = 0.$$
- Solution: $T(n) \leq O(n \log n)$



Another classic divide and conquer problem

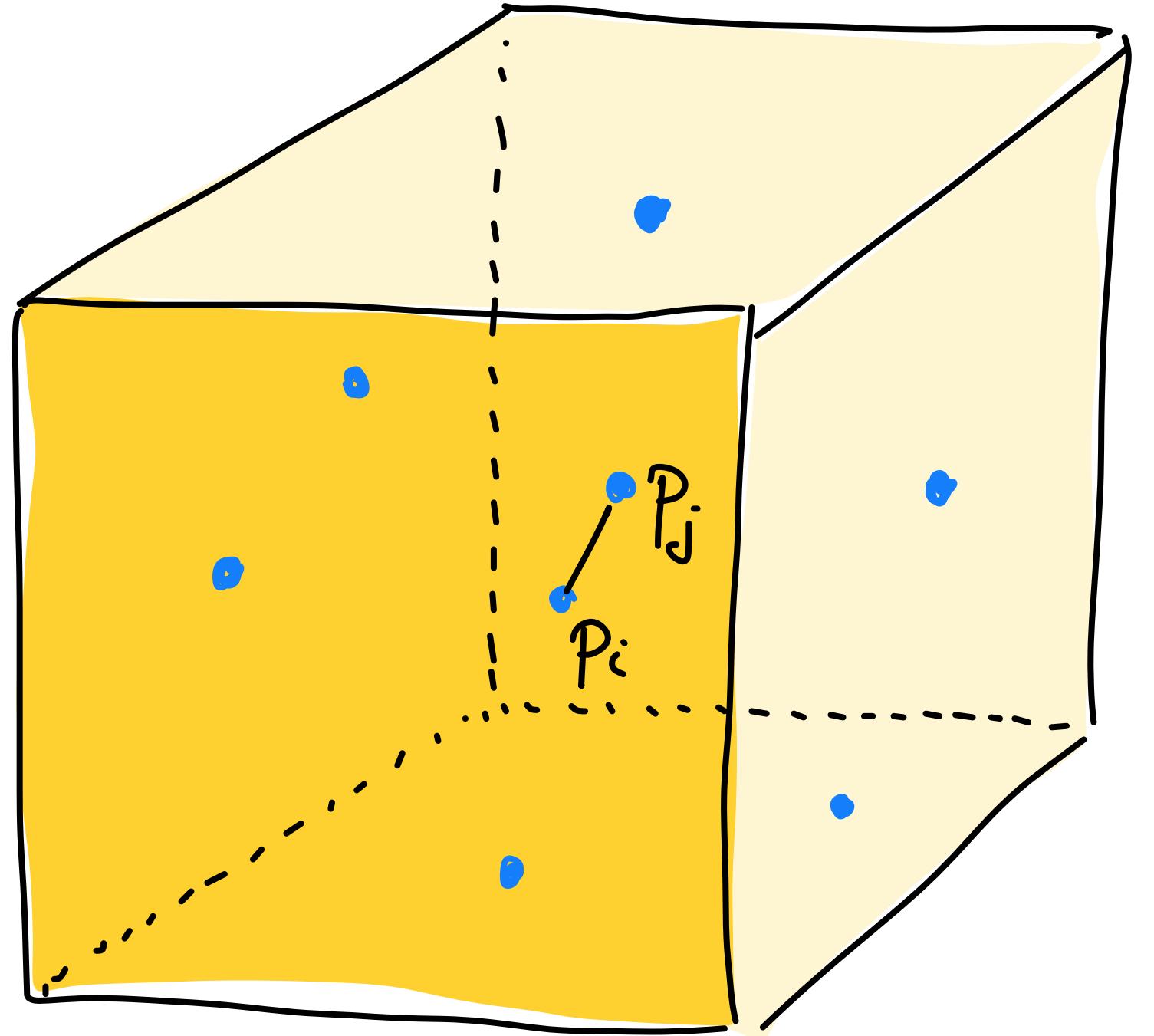
Mergesort

- To sort an array of n entries, recursively sort the first half and recursively sort the second half. Then *merge* the two sorted lists.
- Merging two sorted arrays takes $O(n)$ time as we only have to compare current elements as we iterate through both arrays
- Recursive time equation:
$$T(n) \leq 2T(n/2) + O(n) \text{ with } T(1) = 0.$$
- Solution: $T(n) \leq O(n \log n)$



Euclidean closest pair

- **Input:** A sequence of n points $p_1, \dots, p_n \in \mathbb{R}^d$
- **Find:** The pair p_i, p_j minimizing $\|p_i - p_j\|$.
- **Brute force algorithm:** Try all pairs. $O(n^2d)$ time.
- Is there a better algorithm for small d ?
 - In 1D for example, we can sort and then compare nearest neighbors for $O(n \log n)$.
 - Can we do better?



2D Euclidean closest pair

- Sorting on first coordinate will not work
- No single direction for sorting guarantees success
- **Divide and conquer algorithm:**
 - Need to figure out a way to subdivide the problem
 - Then build solution from best solutions to both halves. This will require extra processing

$B(1, 10)$

A
•
 $(0, 0)$

C
•
 $(7, 2)$

Sorting gives
 A, B, C while shortest
pair is $A - C$.

Split across x -coordinate anyways

- Let's split according to x -coordinate anyways

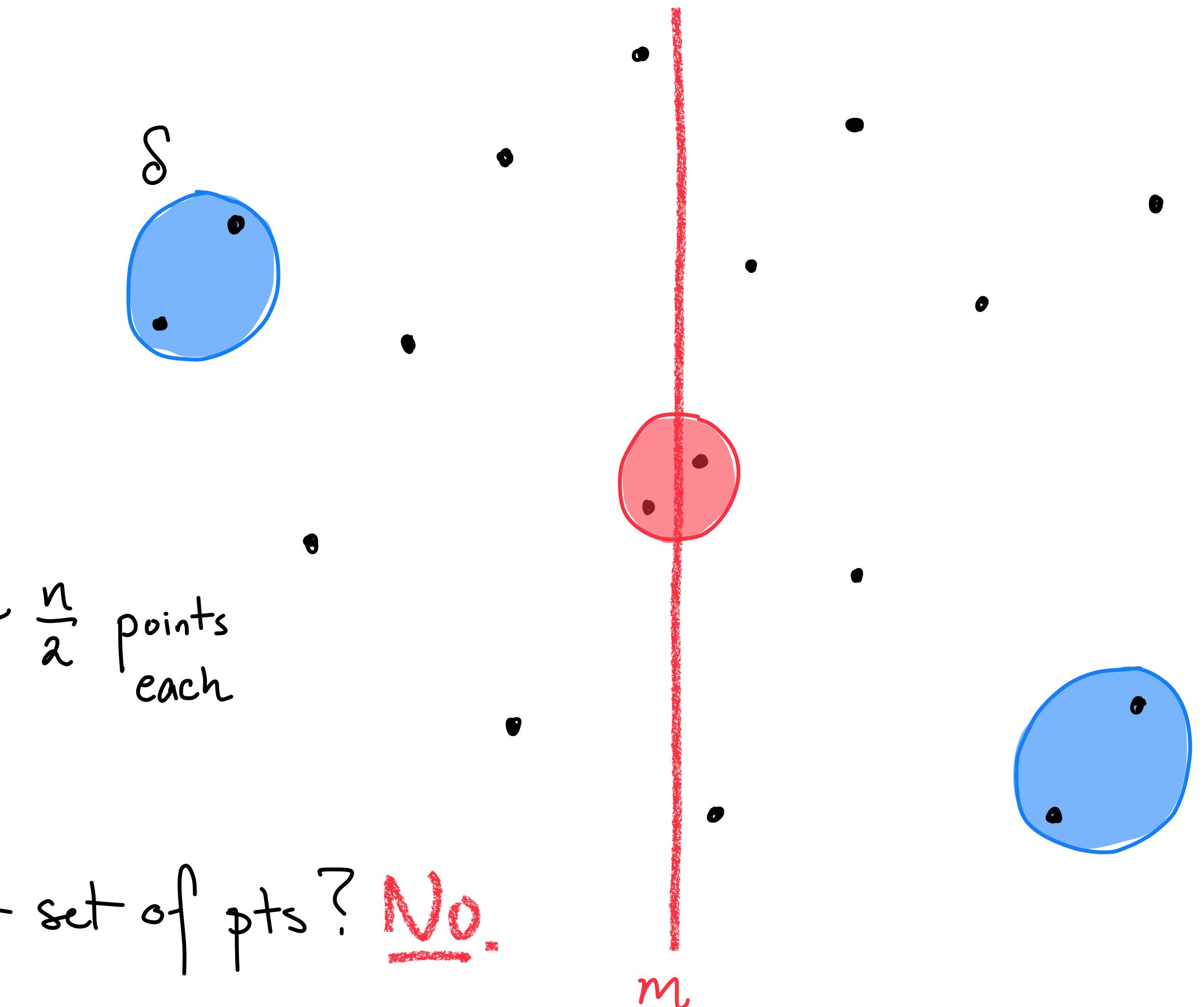
- Let m be the median x -coordinate

- Divide the set into points

$$\{p : p_1 \leq m\} \text{ and } \{p : p > m\}$$

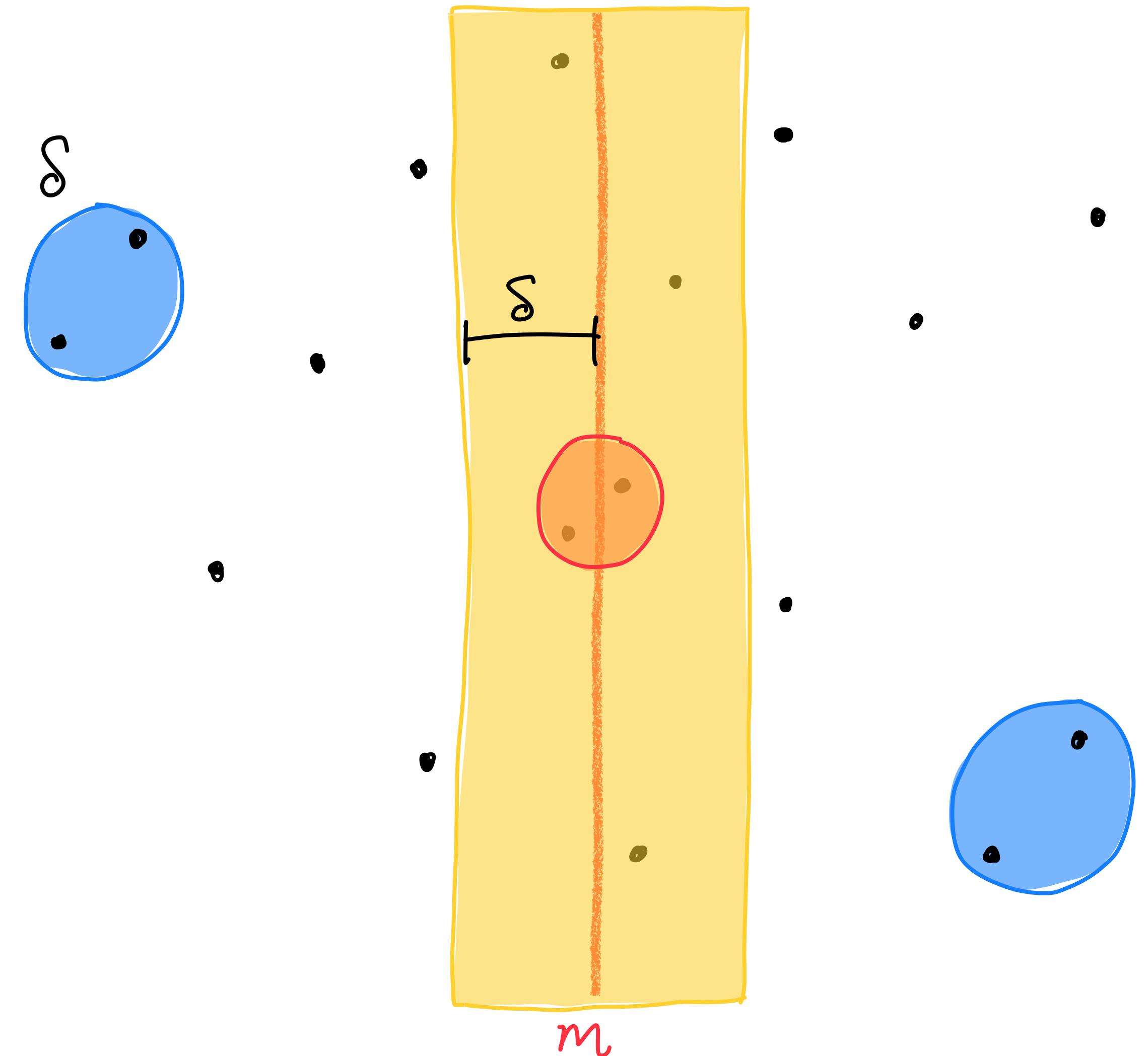
- Let δ be the minimum of the two solutions

Is this guaranteed to be the closest set of pts? No.



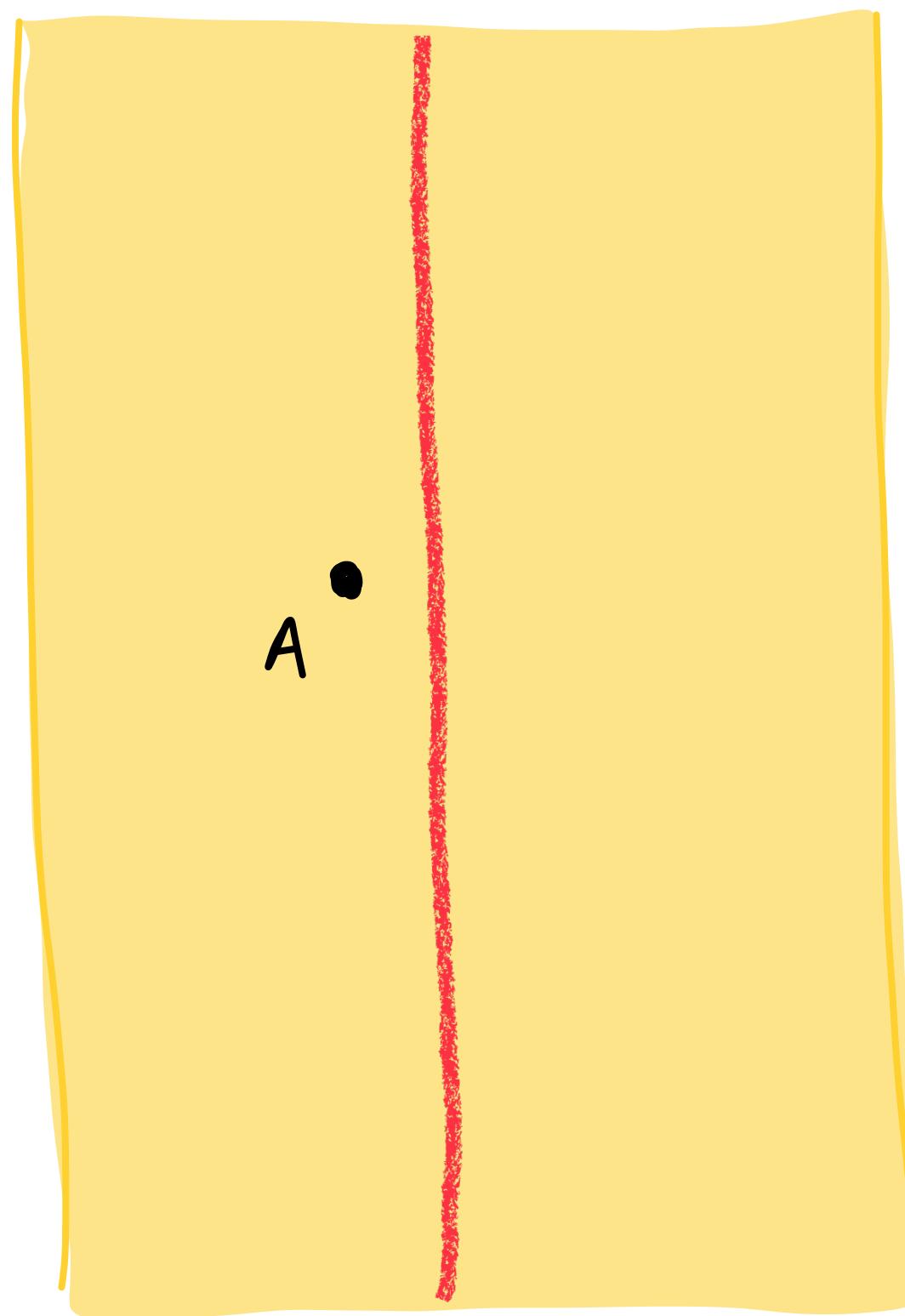
The “conquer” aspect of the algorithm

- We only need to worry about pairs that are **both** split by the median and $< \delta$ distance apart
 - During “conquer” step, only need to look at vertices in the δ -width band
 - Within the band, only need to compare points with y -coordinates that differ by $< \delta$



Close-up analysis

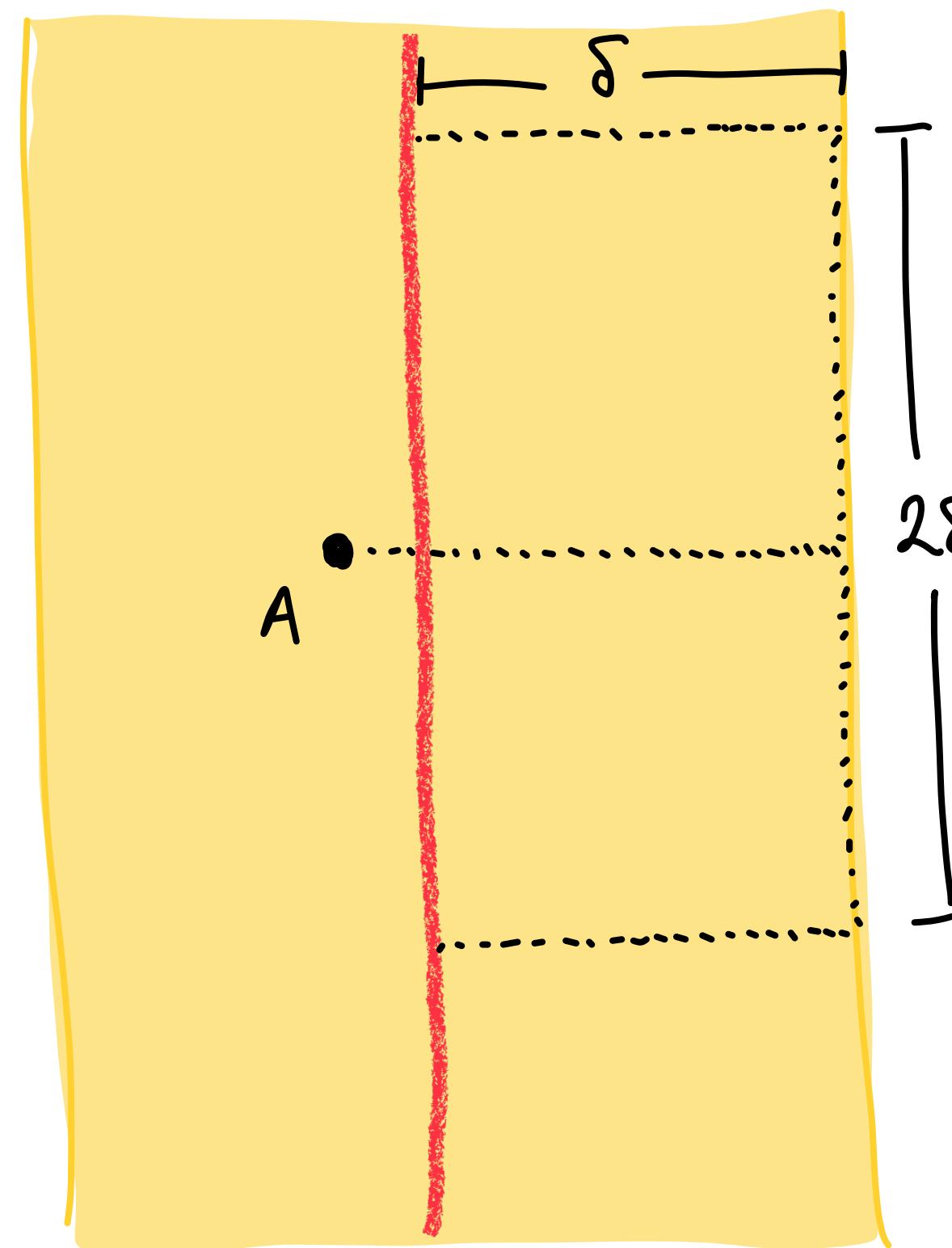
How many pts across the median do we have to compare with A ?



Close-up analysis

How many pts across the median do we have to compare with A ?

In order to be distance $\leq \delta$ from A,
a pt B must lie in this box.



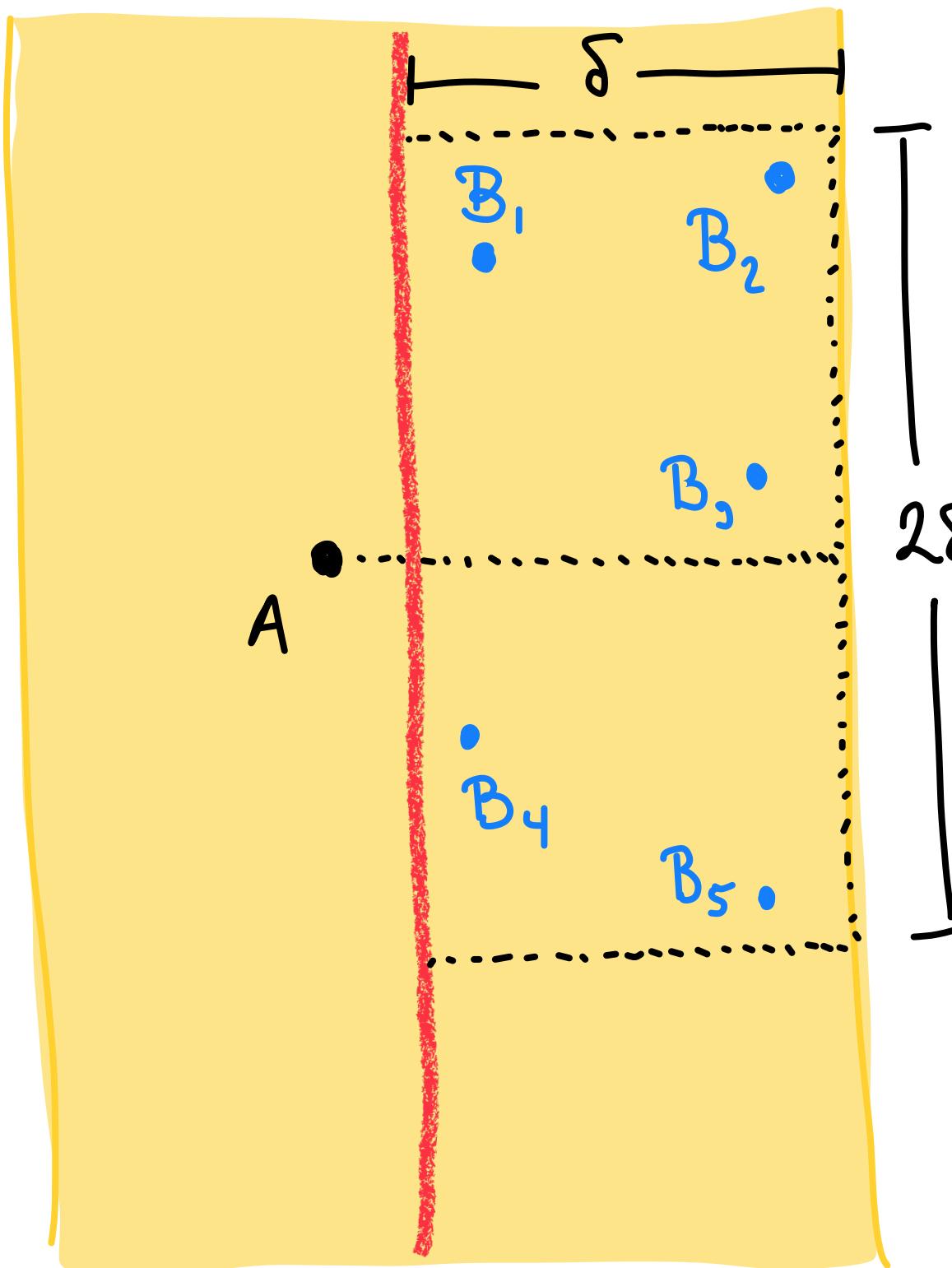
Close-up analysis

How many pts across the median do we have to compare with A ?

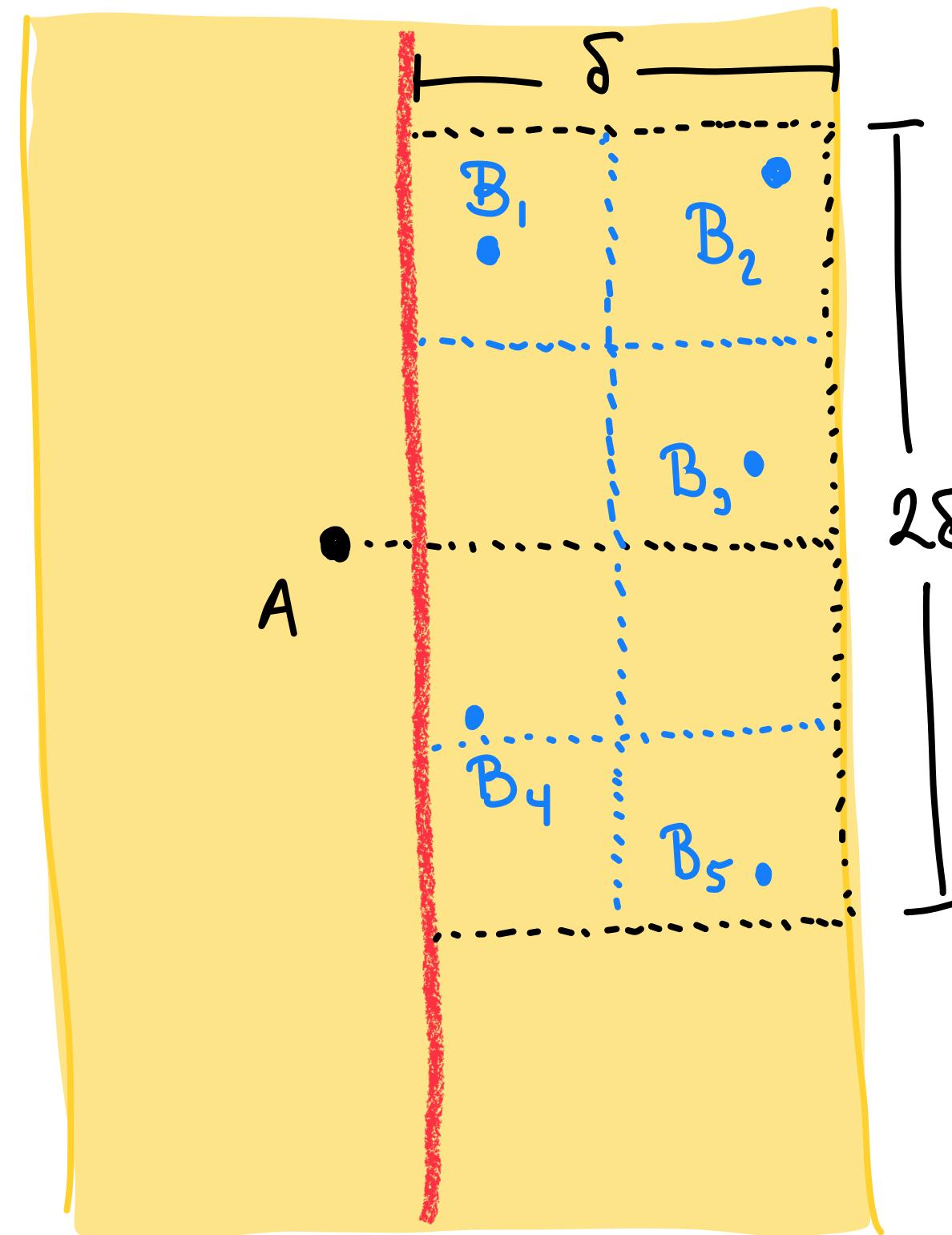
In order to be distance $\leq \delta$ from A,
a pt B must lie in this box.

How many such points B_i can exist?

Note: $\|B_i - B_j\| \geq \delta$ since on
the same side.



Close-up analysis



How many pts across the median do we have to compare with A ?

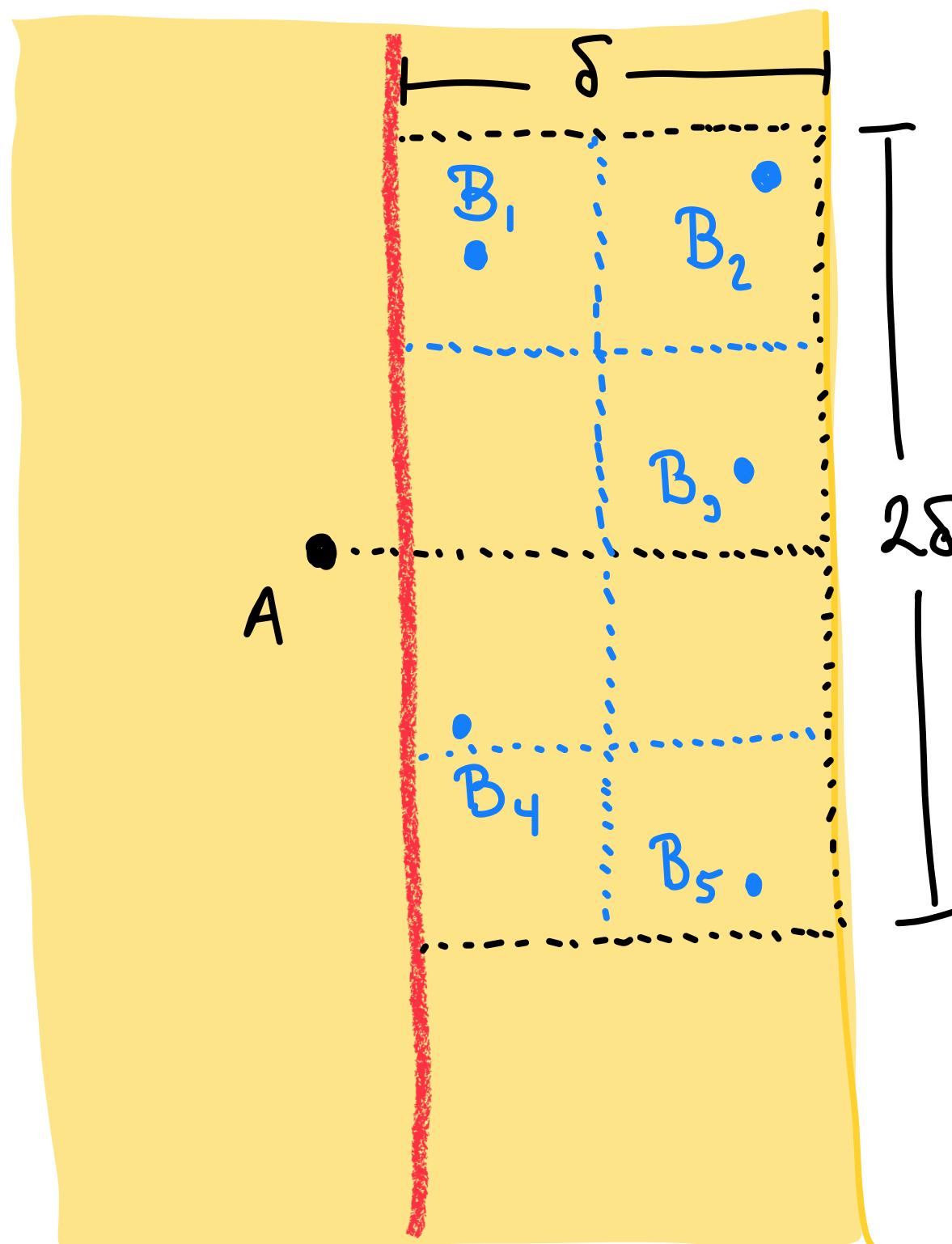
In order to be distance $\leq \delta$ from A, a pt B must lie in this box.

How many such points B_i can exist?

Note: $\|B_i - B_j\| \geq \delta$ since on the same side.

Each $\frac{\delta}{2} \times \frac{\delta}{2}$ box can have at most 1 point B_i . So at most 8 points.

The full conquer subroutine



- Let M be the set of points in band.
- Sort the points in M by y -coordinate
- For each point $a \in M$, compare a to the 8 points before and 8 points after a in the sorting.
- By analysis, this checks all possible pairs of distance $< \delta$.

Divide and conquer algorithm

$$\text{Total: } T(n) = 2T\left(\frac{n}{2}\right) + O(n \log n)$$

- **Divide step:**
 - Compute median m and divide into two subproblems $\leftarrow O(n \log n)$ time with sorting
 - Recursively calculate shortest distance for subproblems $\leftarrow 2T\left(\frac{n}{2}\right)$ by recursion
- **Conquer step:**
 - Compute the set of points in the band $M \leftarrow O(1)$ time since we sorted for the median
 - Sort M by y-coordinate $\leftarrow O(n \log n)$ time as potentially n points in band.
 - Compare points in sorted M with the next 8 points and update if closer pair found.
 $\uparrow O(n)$ time since sorted.

Better divide and conquer algorithm

- **Preprocessing:**

- Sort points according to x -coordinate for list X
- Sort points according to y -coordinate for list Y

$\} O(n \log n)$ time. Only once.

- **Divide step** (sorted lists X, Y):

- Compute median m by x -coordinate $\leftarrow O(1)$ time since sorted
- Divide X into X_L, X_R . Filter Y into Y_L and Y_R . $\leftarrow O(n)$ time, once-through the list
- Recursively solve (X_L, Y_L) and (X_R, Y_R) problems for $\delta \leftarrow 2 T(\frac{n}{2})$ by recursion

- **Conquer step:**

- Filter Y into the band M of x -coordinates $m \pm \delta \leftarrow O(n)$ time
- Compare M to the next 8 points and update if closer point is found. $\leftarrow O(n)$ time

Total time:

$$T(n) = 2T\left(\frac{n}{2}\right) + O(n)$$

$$T(n) = O(n \log n)$$

Analysis divide and conquer runtimes

The master theorem

- For solving recursive equations of the form

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + f(n) \text{ and } T(n < b) = O(1)$$

- Different cases based on how $f(n)$, a , and b compare:

Analysis divide and conquer runtimes

The master theorem

- For solving recursive equations of the form

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + \mathcal{O}(n^k) \text{ and } T(n < b) = O(1)$$

- Different cases based on how $f(n)$, a , and b compare:

- If $a < b^k$, then $T(n) = O(n^k)$
- If $a = b^k$, then $T(n) = O(n^k \log n)$
- If $a > b^k$, then $T(n) = O(n^{\log_b a})$