Lecture 7

Minimum spanning trees

Chinmay Nirkhe | CSE 421 Winter 2026

Minimum spanning trees/forests

Vlcja‘l'\‘vc ’\«b\glﬂk allowed

e Input: connected G = (V, E), edge weights w : £ — |

Output: Atree T = (V, E’) such that every vertex is connected and Z w(e)

eck’

IS minimized. Called a minimum spanning tree.

Minimum spanning trees/forests

e Input: G = (V,E), edge weightsw : E — |

e Qutput: A forest ' = (V, E’) with a minimum spanning tree per connected

component of GG. Called a minimum spanning forest (or a minimum
spanning tree).

« Equivalently, a subgraph F of minimal total weight such that u, v are
connected in F iff they are connected in G.

B 'Em‘,m‘

Ql
e — —
\%“‘:;\. 54;»’ S,
;,;’-’ , 2
y \‘\ 3 I\
N
» — 0

Prim’s algorithm
High level

» Dijkstra’s creates a spanning tree as it unfolds.

 However, Dijkstra’s optimizes for a shortest-path tree from a root s.

 Whereas, we want to optimize for a minimum weight tree (root indep.).

®
2

£ 3

A.
G

S

Prim’s algorithm
High level

» Dijkstra’s creates a spanning tree as it unfolds.

 However, Dijkstra’s optimizes for a shortest-path tree from a root s.

 Whereas, we want to optimize for a minimum weight tree (root indep.).

S
D X 'LS‘\T Q’ 4 ‘l'm Miaimunmn S F&V\V\‘?\j lree.
- RS ¢ e AR
Z i :
| 5' WeL \/LI” 17\ i VYR a\w\’ 11
6 3 J £
S S

Prim’s algorithm
High level

 Pick a starting vertex s € V. Let § « {s}.
e While S doesn’t equal V

o Find the edge (i, v) C S X (V\S) of
minimal weight w(u, v).

e SetS « SU {v} and set parent //é \O) BAD\Q

p(v) < u.

we. will eave the cltzuls ﬁ,
‘/\ow o do <o dDOV lﬂt/z

Prim’s algorithm
High level

 Pick a starting vertex s € V. Let § « {s}.
e While S doesn’t equal V

o Find the edge (i, v) C S X (V\S) of
minimal weight w(u, v).

e SetS « SU {v} and set parent //é \O) BADXQ

p(v) < u.

we. will eave the cltzuls ﬁf
‘/\ow o do <o dDOV lﬂt/z

Prim’s algorithm
High level

 Pick a starting vertex s € V. Let § « {s}.
e While S doesn’t equal V

o Find the edge (i, v) C S X (V\S) of
minimal weight w(u, v).

e SetS « SU {v} and set parent //é \O) BADXQ

p(v) < u.

we. will eave the cltzuls ﬁf
‘/\ow o do <o dDOV lﬂt/z

Prim’s algorithm
High level

 Pick a starting vertex s € V. Let § « {s}.
e While S doesn’t equal V

o Find the edge (i, v) C S X (V\S) of
minimal weight w(u, v).

e SetS « SU {v} and set parent //é \O) BADXQ

p(v) < u.

we. will eave the cltzuls ﬁf
‘/\ow o do <o dDOV lﬂt/z

Prim’s algorithm
High level

 Pick a starting vertex s € V. Let § « {s}.
e While S doesn’t equal V

o Find the edge (i, v) C S X (V\S) of
minimal weight w(u, v).

e SetS « SU {v} and set parent //é \O) _zl)XQ

p(v) < u.

10

we. will leave fhe cletzuls ﬁf
how b do <0 v Ltz

Prim’s algorithm
High level

 Pick a starting vertex s € V. Let § « {s}.

e While S doesn’t equal V

o Find the edge (i, v) C S X (V\S) of
minimal weight w(u, v).

e SetS « SU {v} and set parent . Q 3 /3l X
p(v) < u. //é \O O

11

we. wll leave. fhe. etz ls 5”
‘/\ow o do <o dDOV lat/z

/\

Kruskal’s algorithm
High level

e Start with ' = (V,E' = @)

» While there exists edges e € E\ E’ such that
E’ U {e} contains no cycles, add such edge
of minimal weight w(e) to E’

12

Kruskal’s algorithm
High level

e Start with ' = (V,E' = @)

» While there exists edges e € E\ E’ such that
E’ U {e} contains no cycles, add such edge
of minimal weight w(e) to E’

13

Kruskal’s algorithm
High level

e Start with ' = (V,E' = @)

» While there exists edges e € E\ E’ such that
E’ U {e} contains no cycles, add such edge
of minimal weight w(e) to E’

14

Kruskal’s algorithm
High level

e Start with ' = (V,E' = @)

» While there exists edges e € E\ E’ such that
E’ U {e} contains no cycles, add such edge
of minimal weight w(e) to E’

15

Kruskal’s algorithm
High level

e Start with ' = (V,E' = @)

» While there exists edges e € E\ E’ such that
E’ U {e} contains no cycles, add such edge
of minimal weight w(e) to E’

16

Kruskal’s algorithm
High level

e Start with ' = (V,E' = @)

» While there exists edges e € E\ E’ such that
E’ U {e} contains no cycles, add such edge
of minimal weight w(e) to E’

17

Kruskal’s algorithm
High level

e Start with ' = (V,E' = @)

» While there exists edges e € E\ E’ such that
E’ U {e} contains no cycles, add such edge S

of minimal weight w(e) to £’ / \
2y

O O

p)| N\
//?\Q/ OQ\Q
/s

O—
L’.

18

Kruskal’s algorithm
High level

e Start with ' = (V,E' = @)

» While there exists edges e € E\ E’ such that
E’ U {e} contains no cycles, add such edge

of minimal weight w(e) to E’ / \

2 3
o . N

19

Kruskal’s algorithm
High level

e Start with ' = (V,E' = @)

» While there exists edges e € E\ E’ such that
E’ U {e} contains no cycles, add such edge

of minimal weight w(e) to E’ / \

2 3
o . AN

20

Kruskal’s algorithm
High level

e Start with ' = (V,E' = @)

» While there exists edges e € E\ E’ such that
E’ U {e} contains no cycles, add such edge
of minimal weight w(e) to E’

21

A unified argument for proving correctness
Of both Prim’s and Kruskal’s algorithm

* A partition/cut of the vertices is a split into two

pieces S and V\S. /\
» The cut is denoted as (S, V\S). P /\
« An edge crosses the cutif e = (14, v) and u € S and \“
v € VA\S. L /

» We say a subgraph G’ C G respects the cut (S, V\S) V\S
iff no edge of G’ crosses the cut.

. Cotaw o{'\ G— On\\-{

A unified argument for proving correctness
Of both Prim’s and Kruskal’s algorithm

* A partition/cut of the vertices is a split into two

pieces S and V\S. /\
» The cut is denoted as (S, V\9). g l\
» An edge crosses the cutif e = (1, v) and u € S and \“

v € VA\S. // /
» We say a subgraph G’ C G respects the cut (S, V\S)

iff no edge of G’ crosses the cut. A diffeceat ?&rkh‘o/\ which

also YESFecA’S the C"(l_-

23

Arguing correctness of greedy MST algorithms

Definition: An edge ¢ is safe for a forest 1 iff there is some

cut (S, V\S) respected by T such that e is the cheapest e /\
crossing (S, V\9). O\
. "‘;1

. /
Theorem: Greedy algorithms that always choose safe edges -5,
for the current forest 1 correctly compute an MST ” : |

° .. +
Proof: By induction. Let e be the first edge added by greedy o \. /
algorithm to forest 7 that is not contained in any MST. / / ,
e (by construction) is the cheapest safe edge for some cut < V\sS
(S, V\S). It suffices to show there is some MSF which
contains 1'U {e;}. —
| v { } — ed«am O’F Zt G’

24 Co!au o{'\ G— Dn\\{

Arguing correctness of greedy MST algorithms

Definition: An edge ¢ is safe for a forest 1 iff
there is some cut (S, V\S) respected by T such
that e is the cheapest edge crossing (S, V\S).

Theorem: Greedy algorithms that always choose

safe edges for the current forest 1 correctly
compute an MST

Proof: By induction. Let e be the first edge

added by greedy algorithm to tree 1 that is not
contained in any MST.

e (by construction) is the cheapest safe edge for
some cut (S, V\S). It suffices to show there is
some MST which contains T'U {e}.

25

i B \ - e,daes of

/ \._-' . cd&f,s to adel
e i to qenente MST
— Other eda,;s of

(x

Arguing correctness of greedy MST algorithms

Definition: An edge ¢ is safe for a forest 1 iff

there is some cut (S, V\S) respected by T such S V\&

that e is the cheapest edge crossing (5, V\\S). /”\

Theorem: Greedy algorithms that always choose ? ! .\ — e.o(aes of

safe edges for the current forest 1" correctly I \ - T
compute an MST ‘f SN oz cdges Ho odd
Proof: By induction. Let e be the first edge \-- . .":/ T gcw:rah MST
added by greedy algorithm to tree 1 that is not e’ - Other eda,:s of

contained in any MST.

While e is not contained. N an MS’I: G
e (by construction) is the cheapest safe edge for

some cut (S, V\S). It suffices to show there is some. Other e&%a e C“U%ﬁ ng\/\g) must,
some MST which contains T U {e}. Since. w(e) 2 w(e) , &)(Ql,\ang;l\g e Tor €

CQV\V\O‘\’ 1nCrease we 3(/\“(' of S\Javmiﬁ ’lhze,.

26

Applying proof for Prim’s and Kruskal’s

 Prim’s algorithm
 Add cheapest vertex from current tree to the rest

» S equals the vertices connected by the tree T at that moment.

 Kruskal’s algorithm

» Add cheapest vertex connecting two trees 1| and 1,

» 5 = the vertices in T} (amongst many possible defs. of)

27

Implementation details for Prim’s

» We need a data structure to keep track of distance from u € V\§ to S with
the ability to quickly calculate the minimal element u.

 Answer: Priority queue
o |nitial state: O includes all of V with keys equaling co except key of s is 0.
 Update rule when processing vertex u that we pop off the priority queue:

» For each neighbor v, update key to w(u, v) if necessary.

28

Runtime of Prim’s

« O(n) insertions, O(n) runs of delete-min, and O(m) updates to the key

e Same resultant complexity as Dijkstra’s
. Array implementation: O(n?) time

» Heap implementation: O(m log n) time

29

Implementation details for Kruskal’s

* Need to add edges of minimal weight but only if they don’t form a cycle

» Helpful to first sort all the edges by weight: O(mlogm) = O(mlogn) time

 |terate through edges in sorted order

 |If the edge connects two trees in the forest, we add. Otherwise skip.

 Need a data structure to handle this type of query: Union-Find
» Total cost of Union-Find is O(m - a(n)) with a(n) < logm

» Dominant runtime is from sorting for O(m log m) time.

30

Union-find data structure

Also known as disjoint-set data structure

 Stores a collection of disjoint (hon-overlapping) subsets of [7]

* Allowed operations and runtimes
« Makeset(x) create a new set with only the element x. Takes O(1) time
« Find(x) returns the “name” of the set containing x. Takes O(a(n)) time*

« Merge(x, y) merges the sets containing x and y. Takes O(a(n)) time*

31

Implementation details for Kruskal’s

 Kruskal’s requires O(n) initalizations, O(m) finds and O(n) merges of sets

» Total amortized runtime is O(m log n) + O(ma(n)) = O(mlogn).
o Data structures matter!

 Union-find is a data structure optimized for an algorithm like Kruskal’s

. Generically using an array would yield O(n°) since merge is slow.

32

The “cut”/“lightest-edge” property

» Lemma: For any cut (S, V\S) of G, if e is a minimum-
weight edge crossing the cut, then there exists an MST that

contains e.

 Proof:

* An exchange principle argument. Assume all MSTs do
not contain e.

« Any MST must contain at least one edge e’ crossing cut.

» Replacing e’ with e can only improve or maintain weight.
So there exists a MST with e.

33

The “cycle”/“heavy edge” property

« Lemma: For any cycle C of G, if e is strictly the heaviest edge of C,
then e does not participate in any MST.

e Proof:

* An exchange principle argument. Consider any MST containing e.
Now remove e.

o This disconnects the MST into two trees. T /
» Each little tree contains some continuous subset of the vertices of C. "~

» Because it’s a cycle, there exists edge ¢’ connecting the two trees.

» Replacing e with e’ makes the tree lighter, a contradiction!

34

Parallelizing MST finding

Boruvka’s algorithm (1927)

* Notice that until the trees in the forest during Kruskal’s could grow in parallel
until they join together

* |s there an algorithm for parallelizing this growth?
* At each step
 Each tree chooses its cheapest outgoing edge
* [wo trees in the forest can choose to add the same edge

 Need a tiebreaker on edge weights (no equal weights) to avoid generating
cycles

35

Boruvka implementation example

OY-:L \O
e NN
//Q N / Q\O

Boruvka implementation example

/'ac ﬁ‘\«'\ s UM _TAQ, WU 5"‘3 ‘

Boruvka implementation example

/'ac ﬁ‘\«'\ s UM _TAQ, WU 5"‘3 ‘

AONY
N
N Qy /3l \
//6 &O 4 D 5 O

() —

41 /8

Boruvka implementation example

/Iacgl\,\;% U\v\.\%v\@ W ‘L'E‘

<>/ N

- X
A AN

OF S

Boruvka implementation example

/Iaﬁ ﬁ‘\«'\ s UM _TAQ, WU 3"‘\5 ‘

L, O O
o7 T

Other MST algorithms

 Cheritos and Tarjan:
 Uses a queue of components
 Component at head chooses cheapest outgoing edge

* New merged component goes to tail of the queue
» O(mloglogn)time
» Chazelle: O(m - a(m) - log(m)) time

» Karger, Klein, and Tarjan: O(m + n) time algorithm that works most of the time

41

Applications of MST

 Network design — minimal connectivity for telephone, electrical, cable, internet networks
* Approximation algorithms for computational problems - traveling problem, Steiner trees
* |ndirect applications

 Max bottleneck paths

 LDPC error correcting codes

* Image restoration under Renyi entropy

 Reducing data storage in sequencing amino acids
 Modeling local particle interaction in turbulence flows

* Autoconfig protocol for Ethernet bridging to avoid network cycles

42

k-clustering of data points

v
Maximum distance clustering /\
. ’ U o7

e Input: A set U of n elements, a metricd : U” - R,

and k € N

» Metric satisfies d(u, u) = 0, d(u,v) = d(v, u)

e and triangle inequality d(u, v) + d(v, w) > d(u, w) , e
« Output: A clustering function a : U — [k] maximizing n .

Alun)
min d(u,v), Minimup ist

uyvelU: a(u)#a(v) Lot o

the minimum distance between the clusters Clew fens

43

Kruskal’s based algorithm

. Let V= U and E = V? (all-to-all) with weight w(e) = d(e).

» Run Kruskal’s until n — k edges are added.

e Ensures that there are k trees in the forest.
* Assign a cluster for every tree.

» Alternatively, run any MST algorithm and delete the heaviest
k — 1 edges from the output tree.

44

Maximum distance clustering optimality

« Let d* be the dist. between clustering a generated by Kruskal’s

d*
e By our alg. design, d* > d(u, v) for u, v in the same cluster: -
a(u) = a(v).
« Consider a different clustering b : U — [k] 5(), .-~
« There exist two points such that a(u#) = a(v) but L NN
b(u) # b(v). |
» Then spacing between clusters of b is at most d(u, v) < d*. -
b(fv)

» So b is no better than a so a is optimal.

45

